IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Chemical and sensory characterization of Xinomavro PDO red wine

Chemical and sensory characterization of Xinomavro PDO red wine

Abstract

Aroma is considered one of the most important factors in determining the quality and character of wine. The relationship between wine character and its volatile composition is recognized by several researchers worldwide. Since these compounds influence the sensory perceptions of consumers, both volatile composition and sensory properties are essential in determining wine aroma characteristics.

In this study, the volatile composition with its corresponding aroma descriptors was used to identify the main aroma compounds of the variety Xinomavro. Xinomavro (Vitis Vinifera L.) is one of the noble red grape varieties of Northern Greece and is present in many PDO red wines. In the experimental winery of our laboratory, a total of 6 different red wines were produced according to the same vinification protocol.

Aroma compounds of wine samples were extracted by Liquid-Liquid extraction, concentrated with SAFE method and analysed by Gas Chromatography-Mass Spectrometry (GC-MS) /Olfactometry to identify the key odorants of the variety. Olfactory analysis identified 30 aroma-active compounds, of which, ethyl hexanoate had the highest modified detection frequency (MF%).

25 of the key-volatile compounds were quantified using GC-MS, SIM mode, followed by the determination of Odor Activity Values (OAVs). A trained panel evaluated the wines using sensory descriptive analysis, based on a total of 11 aroma attributes. According to the data obtained, a complex aroma profile rich in alcohols, ethyl esters, acetate esters and fatty acids, with a contribution of terpenes and volatile phenols was recorded. Ethyl octanoate, ethyl hexanoate, isoamyl acetate, β-damascenone and eugenol were the aroma compounds with OAVs > 10. All these compounds are associated with fruity and  spicy aromas. Following this pattern, the aroma of the six wines was mainly characterized by three typical sensory terms, red fruits, which include berry fruits, strawberry and cherry, spices, which include pepper and clover and tomato paste.

This study provides a useful approach on the chemo-sensory fingerprint of Xinomavro PDO wines. It may be further used to determine the aroma “key” compounds responsible for Xinomavro aroma characters, as they derived from the sensory evaluation. This final result will be a great tool to improve the Xinomavro wines using winemaking methods to enhance the distinctive aromatic profile of this specific variety.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Goulioti Elli1, Kanapitsas Alexandros1, Lola Despina1, Bauer Andrea2, Jeffery David3 and Kotseridis Yorgos1

1Laboratory of Enology and Alcoholic Drinks, Agricultural University of Athens
2Faculty Life Science, Department of Food Science and Nutrition, Hamburg University of Applied Sciences
3Department of Wine Science, University of Adelaide

Contact the author

Keywords

aroma, GC-MS, OAV, sensory analysis, Xinomavro

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Throughout centuries of anthropocentric breeding, plants have been selectively bred to enhance their quality traits and yield, often overlooking the importance of neglected attributes, like those involved in the interactions with beneficial microorganisms. This phenomenon led to an alteration in the distribution of photosynthetic products, shifting from defence mechanisms to growth, commonly described as ‘domestication syndrome’. Addressing the losses stemming from this condition is imperative just as unravelling the concealed communication between grapevines and beneficial microorganisms.

Relationship between terroir and acidity for the red wine grape cultivar Malbec N or Cot N (Vitis vinifera L.) in AOC “Cahors” and “Côtes du Frontonnais “

L’étude préliminaire, réalisée sur les principaux cépages de la région Midi-Pyrénées, a montré que le Cot N possédait des teneurs en acide tartrique dans les moûts et les vins plus élevées que celles des cépages Négrette N, Tannat N, Duras N et Fer Servadou N.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Climate change impacts water availability for agriculture, notably in semi-arid regions like South Africa, necessitating research on cultivar and rootstock adaptability to water constraints. To evaluate the performance (vegetative and reproductive) of different Chenin Blanc-rootstock combinations to the two water regimes, a field experiment was established in a model vineyard at Stellenbosch University, South Africa. Chenin Blanc vines grafted onto four different rootstocks (110Richter, 99Richter, 1103Paulsen and US 8-7) were planted in 2020. The vines are managed under two contrasting water conditions – dryland and irrigated (industry norm).

Evaluating the suitability of hyper- and multispectral imaging to detect endogenic diseases in grapevine

Endogenic diseases often arise from pathogens that exist within the plant tissue, including fungi, bacteria, and viruses, which can remain latent and then emerge under stress conditions or favorable environmental conditions, causing symptoms that weaken vines or can lead to plant death.