IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Chemical and sensory characterization of Xinomavro PDO red wine

Chemical and sensory characterization of Xinomavro PDO red wine

Abstract

Aroma is considered one of the most important factors in determining the quality and character of wine. The relationship between wine character and its volatile composition is recognized by several researchers worldwide. Since these compounds influence the sensory perceptions of consumers, both volatile composition and sensory properties are essential in determining wine aroma characteristics.

In this study, the volatile composition with its corresponding aroma descriptors was used to identify the main aroma compounds of the variety Xinomavro. Xinomavro (Vitis Vinifera L.) is one of the noble red grape varieties of Northern Greece and is present in many PDO red wines. In the experimental winery of our laboratory, a total of 6 different red wines were produced according to the same vinification protocol.

Aroma compounds of wine samples were extracted by Liquid-Liquid extraction, concentrated with SAFE method and analysed by Gas Chromatography-Mass Spectrometry (GC-MS) /Olfactometry to identify the key odorants of the variety. Olfactory analysis identified 30 aroma-active compounds, of which, ethyl hexanoate had the highest modified detection frequency (MF%).

25 of the key-volatile compounds were quantified using GC-MS, SIM mode, followed by the determination of Odor Activity Values (OAVs). A trained panel evaluated the wines using sensory descriptive analysis, based on a total of 11 aroma attributes. According to the data obtained, a complex aroma profile rich in alcohols, ethyl esters, acetate esters and fatty acids, with a contribution of terpenes and volatile phenols was recorded. Ethyl octanoate, ethyl hexanoate, isoamyl acetate, β-damascenone and eugenol were the aroma compounds with OAVs > 10. All these compounds are associated with fruity and  spicy aromas. Following this pattern, the aroma of the six wines was mainly characterized by three typical sensory terms, red fruits, which include berry fruits, strawberry and cherry, spices, which include pepper and clover and tomato paste.

This study provides a useful approach on the chemo-sensory fingerprint of Xinomavro PDO wines. It may be further used to determine the aroma “key” compounds responsible for Xinomavro aroma characters, as they derived from the sensory evaluation. This final result will be a great tool to improve the Xinomavro wines using winemaking methods to enhance the distinctive aromatic profile of this specific variety.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Goulioti Elli1, Kanapitsas Alexandros1, Lola Despina1, Bauer Andrea2, Jeffery David3 and Kotseridis Yorgos1

1Laboratory of Enology and Alcoholic Drinks, Agricultural University of Athens
2Faculty Life Science, Department of Food Science and Nutrition, Hamburg University of Applied Sciences
3Department of Wine Science, University of Adelaide

Contact the author

Keywords

aroma, GC-MS, OAV, sensory analysis, Xinomavro

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Integrated sustainability assessment in viticulture: An indicator-based approach applied to organic vineyards

Over the past two decades, sustainable vineyard management practices have become increasingly important as the wine industry is facing critical challenges, including climate change, biodiversity loss, and soil degradation.

Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Grape ripening is a process driven by the interactions between grapevine genotypes and environmental factors. Grape composition is largely responsible for the production

Spatial variability of grape berry maturation program at the molecular level 

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening.

Antioxidant activity of grape seed and skin extract during ripening

Reactive oxygen species (ROS) play an important physiological role in the body’s defense and being involved in numerous signaling pathways 1, 2. When the balance between oxidant and antioxidant species is altered in favor of ROS, oxidative stress is generated. In this condition the cells are damaged as the ROS oxidize important cellular components, such as proteins, lipids, nucleic acids and

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir. The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.