IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of protein stabilization with aspergillopepsin I on wine aroma composition

Influence of protein stabilization with aspergillopepsin I on wine aroma composition

Abstract

The protein haze formation in white and rosé wines during storage, shipping and commercialization has always been an important issue for winemakers. Among the various solutions industrially proposed, the use of bentonite is certainly the most widespread. However, the harmful effects of this treatment are known either in terms of wine volume loss and wine flavour and aroma. The use of aspergillopepsin I -an acid endoprotease from Aspergillus spp- in must and wine has been recently approved by OIV and the European Commission for protein stability, coupled to a heat treatment. Beyond the established efficacy of this approach on wine stability, little is known about its influence on the wine aroma profile. The present study aims to evaluate the combined effect of heat treatment with proteases (HP) in musts on the concentration of 74 wine aroma compounds at lab and semi-industrial scale.  Eight grape musts were treated with acid proteases and heated at 70°C for the lab-scale trials, and the concentrations of wine volatile compounds at the end of the alcoholic fermentation were compared with those deriving form a traditional white and rosé winemaking protocol. The must treatment induced a significant increase (one-way ANOVA, Tukey’s HSD p

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gallo Adelaide1, Paolini Mauro1, Tonidandel Loris1, Leonardelli Andrea1, Barbero-Fondazione Alice1, Celotti Emilio2, Natolino Andrea2, Schneider Rémi3, Larcher Roberto1 and Roman Tomas1

1Fondazione Edmund Mach—Technology Transfer Center
2Università degli Studi di Udine—Dipartimento di Scienze Agroalimentari, Ambientali e Animali
3Oenobrands SAS Parc Agropolis II

Contact the author

Keywords

wine aroma, proteases, heat treatment, protein haze

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exploring induced mutagenesis as a tool for grapevine intra-varietal improvement: increased diversity in ripening periods and bunch traits with climate resilience potential

The wine industry currently relies on a limited number of grapevine cultivars, comprised of numerous clones with slight differences in their viticultural, oenological, or stress-tolerance traits.

Using GIS to assess the terroir potential of an Oregon viticultural region

Deciding to grow grapes in Oregon is complex issue due to our diverse geography, climate, and relatively short history of grape growing. For any potential grape grower, vineyard site selection is the single most important decision they will face.

Landscapes of the wine: the four seasons of herault

Les paysages participent à l’identité des vins de l’Hérault, avec une grande richesse de diversité. Leur observation, au travers des quatre saisons, s’appuie sur deux dimensions primordiales : la genèse de leur construction par l’homme et l’esthétique. L’hiver est la saison la plus favorable au décryptage de ce vignoble étagé, du littoral méditerranéen aux premières pentes du Massif Central; il permet de lire l’histoire des stratégies viticoles des vignerons. Les autres saisons sensibilisent plus à la beauté de vignobles dans des écrins de végétation typiquement méditerranéenne. La multiplicité des pratiques culturales et des cépages contribue à cet attrait. L’incitation au parcours, en toute saison, est très forte grâce au réseau des routes et des chemins de vigne.

Launching the GiESCO guide

Considering that the transfer of research results to the professional level is one of the keys to progress, GiESCO proposes to publish a technical guide supported by scientific references and in the form of standard sheets.

Physiological and performance responses of grapevine rootstocks to water deficit and recovery 

Rootstocks play a key role in the grapevine’s adaptation to the increasing soil water scarcity related to climate change. A pot experiment carried out in 2022 aimed at assessing the physiological responses of seven ungrafted rootstocks to a progressive soil water deficit and a subsequent recovery to field capacity.