IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Flavor Enhancement Of Neutral White Wines By Mango Peel Products

Flavor Enhancement Of Neutral White Wines By Mango Peel Products

Abstract

Varietal flavor is commonly known as the aromatic character of a wine in which the aroma of a particular grape variety predominates. However, not all varieties present particularly pronounced aromas. Therefore, different methods are constantly sought to enhance the aroma of wines with neutral aromatic characteristics, such as the use of glycosidases (1), certain yeast strains (2) or maceration with different agricultural products. In this work, aiming to improve the sensory profile together with the diversification of this product, white wines, derived from a neutral grape variety, were elaborated with the addition of mango peel by-products. This by-product was chosen because of its greatly esteemed tropical scents (3). Three different samples were performed regarding the mango peels application: 7 days co-fermentation (MCF), 7 days maceration post-fermentation (MPF) and no mango peel added, considered as control (C). A comprehensive analysis of the volatile profile, both qualitative and quantitative, was carried out by SPE extraction followed by GC-MS. Wines were also tasted by a panel of experts in order to evaluate the sensory attributes. Conventional analsysis including color parameters were also executed. Preliminary results have shown that MCF and PCF, exhibited an overall terpene compounds increase in which significant amounts of characteristic mango volatile compounds such as 3-carene or p-cymene were found, which evoque floral-resinous aromatic scents. On the other hand, less appreciated compounds such as 1-octen-3-ol (musty odour) were also found in larger quantities in both samples treated with mango peels.  The sensory analysis outcomes showed that, while some unattractive volatiles compounds were identified in the samples treated with mango peels, those were not found in any case during the tasting evaluation. In addition, judges detected exclusive attributes in MCF and PCF samples, defined as compote and apricot notes. Furthermore, these exclusive desirable attributes remained much longer in the mouth in the sample of wines that had undergone post-fermentation maceration (PCF).In conclusion, together with the rest of data analysed, a 7-day post-fermentation maceration with dried mango skins is proposed as a natural cheap and simple aromatisation method for white wines.

References

(1) Vázquez, L. C., Pérez-Coello, M. S., & Cabezudo, M. D. (2002). Effects of enzyme treatment and skin extraction on varietal volatiles in Spanish wines made from Chardonnay, Muscat, Airén, and Macabeo grapes. Analytica Chimica Acta, 458(1), 39-44.
(2) Sabel, A., Martens, S., Petri, A., König, H., & Claus, H. (2014). Wickerhamomyces anomalus AS1: a new strain with potential to improve wine aroma. Annals of Microbiology, 64(2), 483-491.
(3) Pino, J. A., & Mesa, J. (2006). Contribution of volatile compounds to mango (Mangifera indica L.) aroma. Flavour and fragrance journal, 21(2), 207-213.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Oliver-Simancas Rodrigo1, Labrador-Fernández L.1,  Díaz-Maroto M. C.1, Pérez-Coello1 and Alañón-Pardo1

1Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA)

Contact the author

Keywords

Wine styles, Neutral wines, Maceration, Diversification, Agricultural peels.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Mapping of canopy features in commercial vineyards using machine vision

Vineyard canopy features such canopy porosity and fruit exposure influenced microclimate, fungal disease incidence and grape composition. An objective, rapid and non-invasive method to assess and map the canopy status is needed to apply in precision viticulture. A new method for canopy status assessment and mapping based on non-invasive machine vision was applied in commercial vineyards in this work.

Sensory quality of wines as a trait in MAS grape vine breeding – sensory insights from multiple vintages in a F1 breeding population

In the context of the three global crises of global warming, loss of biodiversity and environmental pollution, current agricultural practices need to be reconsidered [1]. Viticulture in particular can contribute to this by optimising plant protection [2].

‘Cabernet Sauvignon’ (Vitis vinifera L.) berry skin flavonol and anthocyanin composition is affected by trellis systems and applied water amounts

Trellis systems are selected in wine grape vineyards to mainly maximize vineyard yield and maintain berry quality. This study was conducted in 2020 and 2021 to evaluate six commonly utilized trellis systems including a vertical shoot positioning (VSP), two relaxed VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a guyot (GY), combined with three levels of irrigation regimes based on different crop evapotranspiration (ETc) replacements, including a 25% ETc, 50% ETc, and 100% ETc. The results indicated SH yielded the most fruits and accumulated the most total soluble solids (TSS) at harvest in 2020, however, it showed the lowest TSS in the second season. In 2020, SH and HQ showed higher concentrations in most of the anthocyanin derivatives compared to the VSPs. Similar comparisons were noticed in 2021 as well. SH and HQ also accumulated more flavonols in both years compared to other trellis systems. Overall, this study provides information on the efficacy of trellis systems on grapevine yield and berry flavonoid accumulation in a currently warming climate.

Analysis of climate spatio-temporal variability in the Conegliano-Valdobbiadene DOCG wine district

Local climate characterization is fundamental in terroir description, yet global change perspectives raise questions about its feasibility, since temporal stability cannot be no more assumed for the forthcoming years.

Reconocimiento geoedafológico para la zonificación vitivinícola de la D.O. Montilla-Moriles

En la región vitivinícola con D.O. Montilla-Moriles (Córdoba) la variabilidad geologico-petrográfica de los terrenos es grande (ROLDÁN GARCÍA y DIVAR RODRÍGUEZ, 1988 a; roldán garcía et al.