IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Flavor Enhancement Of Neutral White Wines By Mango Peel Products

Flavor Enhancement Of Neutral White Wines By Mango Peel Products

Abstract

Varietal flavor is commonly known as the aromatic character of a wine in which the aroma of a particular grape variety predominates. However, not all varieties present particularly pronounced aromas. Therefore, different methods are constantly sought to enhance the aroma of wines with neutral aromatic characteristics, such as the use of glycosidases (1), certain yeast strains (2) or maceration with different agricultural products. In this work, aiming to improve the sensory profile together with the diversification of this product, white wines, derived from a neutral grape variety, were elaborated with the addition of mango peel by-products. This by-product was chosen because of its greatly esteemed tropical scents (3). Three different samples were performed regarding the mango peels application: 7 days co-fermentation (MCF), 7 days maceration post-fermentation (MPF) and no mango peel added, considered as control (C). A comprehensive analysis of the volatile profile, both qualitative and quantitative, was carried out by SPE extraction followed by GC-MS. Wines were also tasted by a panel of experts in order to evaluate the sensory attributes. Conventional analsysis including color parameters were also executed. Preliminary results have shown that MCF and PCF, exhibited an overall terpene compounds increase in which significant amounts of characteristic mango volatile compounds such as 3-carene or p-cymene were found, which evoque floral-resinous aromatic scents. On the other hand, less appreciated compounds such as 1-octen-3-ol (musty odour) were also found in larger quantities in both samples treated with mango peels.  The sensory analysis outcomes showed that, while some unattractive volatiles compounds were identified in the samples treated with mango peels, those were not found in any case during the tasting evaluation. In addition, judges detected exclusive attributes in MCF and PCF samples, defined as compote and apricot notes. Furthermore, these exclusive desirable attributes remained much longer in the mouth in the sample of wines that had undergone post-fermentation maceration (PCF).In conclusion, together with the rest of data analysed, a 7-day post-fermentation maceration with dried mango skins is proposed as a natural cheap and simple aromatisation method for white wines.

References

(1) Vázquez, L. C., Pérez-Coello, M. S., & Cabezudo, M. D. (2002). Effects of enzyme treatment and skin extraction on varietal volatiles in Spanish wines made from Chardonnay, Muscat, Airén, and Macabeo grapes. Analytica Chimica Acta, 458(1), 39-44.
(2) Sabel, A., Martens, S., Petri, A., König, H., & Claus, H. (2014). Wickerhamomyces anomalus AS1: a new strain with potential to improve wine aroma. Annals of Microbiology, 64(2), 483-491.
(3) Pino, J. A., & Mesa, J. (2006). Contribution of volatile compounds to mango (Mangifera indica L.) aroma. Flavour and fragrance journal, 21(2), 207-213.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Oliver-Simancas Rodrigo1, Labrador-Fernández L.1,  Díaz-Maroto M. C.1, Pérez-Coello1 and Alañón-Pardo1

1Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA)

Contact the author

Keywords

Wine styles, Neutral wines, Maceration, Diversification, Agricultural peels.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The “green gold” @fem: assessing grapevine germplasm diversity to crossbreed the varieties of the future

Context and purpose of the study. To date over 3,000 grapevine accessions have been collected at Fondazione Edmund Mach (FEM).

New antibacterial peptides produced by Saccharomyces cerevisiae responsible for the inhibition of malolactic fermentation

In winemaking, several antimicrobial peptides (AMPs) produced by different strains of Saccharomyces cerevisiae were found to be responsible for the inhibition of malolactic fermentation (MLF) carried out by some strains of Oenococcus oeni. However, only two AMPs produced by one of the yeast strains studied were totally identified and their mechanism of action was described. In an attempt to identify new AMPs, a 5-10 kDa peptidic fraction produced by an oenological strain of S. cerevisiae and previously shown to strongly inhibit MLF carried out by a strain of O. oeni was further purified.

Applications of Infrared Spectroscopy from laboratory to industry

The grape and wine industries have long sought rapid, reliable and cost-effective methods to screen and monitor all the stages of the winemaking process, which include grape ripening in the vineyard, harvest and grape reception at the weighbridge, the fermentation stage and the bottling of the final product.

Clones of 10 Vitis vinifera varieties: degree of inter- and intra-varietal variation and putative mechanisms underlying clonal variability

Context and purpose of the study. Intra-varietal variability for key physiological and oenologically important traits can be exploit in viticulture following the consistently higher environmental pressure driven by climate change.

Implications of herbicide, cultivation or cover crop under-vine soil management on the belowground microbiote

Soil management through cover crops in the lines of the vineyards is a common practice in viticulture, since it improves the characteristics of the soil. It has been shown that the cover crops can influence the cycle of nutrients, promote infiltration, decrease erosion, and enhance the soil microbiota biodiversity improving the grapevines. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in hot climates. The use of cover crops under the vines might be a plausible alternative to the use of herbicides or cultivation, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status and belowground microbial communities.