terclim by ICS banner
IVES 9 IVES Conference Series 9 UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

Abstract

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine composition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional. We examined three berry maturity stages from the 2022 vintage: mid-veraison (MV), mid-maturity (MM), 7 days before maturity (M-7), at maturity (M), and 10 days post-maturity (M+10). Classical composition parameters were monitored during maturation. Fine volatile compounds, including lactones, furanones, norisoprenoids, and carbonyls as ripening and over-ripening markers, were quantified in grapes and wines using SPME-GC-MS, while thiols were analyzed in wines by SPE-GC-MS/MS. For example, according to the maturity stages, a significant increase in alcohol content was observed, which varied depending on the grape genotype. The highest concentrations were found in Petit Verdot (13.78 g/L in M-7), Cabernet Sauvignon, Merlot, and Petit Verdot (15.21, 15.30, and 15.75 g/L in M) and Merlot (16.68 g/L in M+10). These values were directly related to the higher sugar concentrations found in their must during the evaluated periods. Total acidity and pH levels vary among cultivars and are also influenced by different maturation stages. Some cultivars show more significant changes over time, while others display more modest fluctuations. As expected, the pH values and total acidity in wines from different cultivars were inversely related. Concerning the analyzed volatile compounds, surprisingly, Petit Verdot exhibited the highest concentrations of γ-nonalactone, followed by Cabernet Sauvignon and Cot, at all maturity stages including M-7 (6.39, 3.90, 3.61 µg/L), M (20.98, 8.98, 6.05 µg/L), and M+10 (13.93, 12.40, 8.48 µg/L), respectively. Overall, this study offers a new method to assess varieties’ sensitivity to overripening and vital insights into the impact of berry maturity stage and cultivar on wine physicochemical traits and volatile compound profiles. These findings can be a foundation for future research aiming to predict or model wine’s chemical and sensory properties.

 

1. Wang, Lina, et al. “Regulation of anthocyanin and sugar accumulation in grape berry through carbon limitation and exoge-nous ABA application.” Food Research International 160 (2022): 111478.
2. Pons, Alexandre, et al. “Impact of the Closure Oxygen Transfer Rate on Volatile Compound Composition and Oxidation Aroma Intensity of Merlot and Cabernet Sauvignon Blend: A 10 Year Study.” Journal of Agricultural and Food Chemistry (2022).
3. Van Leeuwen, Cornelis, et al. “How terroir shapes aromatic typicity in grapes and wines (Part I): Sourced from the research article:” Recent advancements in understanding the terroir effect on aromas in grapes and wines”(OENO One, 2020). Original language of the article: English.” IVES Technical Reviews, vine and wine (2023).
4. Darriet, Philippe, et al. “Aroma and aroma precursors in grape berry.” The biochemistry of the grape berry (2012): 111-136.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jacqueline Santos¹, Sabine Guilhaume¹, Cécile Thibon², Alexandre Pons²

1. UMR EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, ISVV, Villenave d’Ornon, France.
2. Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author*

Keywords

Volatiles compounds, SPME-GC-MS, Composition parameters, Grape maturity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.