IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of redox mediators on the activity of laccase from Botrytis cinerea against volatile phenols

Effect of redox mediators on the activity of laccase from Botrytis cinerea against volatile phenols

Abstract

Volatile phenols namely 4-ethylphenol and 4-ethylguaiacol are formed by enzymatic decarboxylation of hydroxycinnamic acids by Brettanomyces yeasts to give vinylphenols and subsequent reduction of the vinyl group to form the correspondent ethylphenols. The presence of these compounds in wine affects negatively its aromatic quality, conferring unpleasant animal and phenolic odor when present in quantities above the olfactory detection threshold [1]. Several methods have been described to remove these undesirable compounds from wines, including the use laccase enzymes [2, 3]. Due to this, the aim of this work was to evaluate the effect of several natural redox mediators on the activity of Botrytis cinerea laccase against these volatile phenols.

The ability of Botrytis cinerea laccase to degrade 4-ethylphenol and 4-ethylguaiacol was studied by incubation with the enzyme in acetate buffer and model wine, and several phenolic compounds were individually assayed as mediators. Quantification of volatile phenols was accomplished by GC-MS analysis.

The only use of the Botrytis cinerea laccase was not effective in reducing or removing these off-flavors and the presence of mediators was required under these conditions. All phenolic compounds tested (caftaric acid, quercetin-3-O-rutinoside, catechin, epicatechin, ferulic acid and quercetin) favored the degradation of volatile phenols, achieving higher 4-ethylguaiacol removal percentages than that for 4-ethylphenol. These preliminary results confirm the activity of this type of enzyme against volatile phenols and provide knowledge on the effects of natural mediators on the biodegradation effectiveness of undesirable substances which may alter the quality of wine.

References

1. Petrozziello M, Asproudi A, Guaita M, Borsa D, Motta S, Panero L, Bosso A. 2014. Influence of the matrix composition on the volatility and sensory perception of 4-ethylphenol and 4-ethylguaiacol in model wine solutions. Food Chemistry 149: 197–202.
2. Lustrato G, De Leonardis A, Macciola V, Ranalli G. 2015. Preliminary lab scale of advanced techniques as new tools to reduce ethylphenols content in synthetic wine. Agro FOOD Industry Hi Tech 26:51-54.
3. Moeder M, Martin C, Koeller G. 2004. Degradation of hydroxylated compounds using laccase and horseradish peroxidase immobilized on microporous polypropylene hollow fiber membranes. Journal of Membrane Science 245:183-190.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pérez-Navarro José1,2, Osorio Alises María3, Paniagua Martínez Tania3, Giménez Pol4, Canals Joan Miquel4, Zamora Fernando4, Sánchez-Palomo Eva3, González-Vinas Miguel Ángel3 and Gómez-Alonso Sergio2,3

1Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha.
2Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha
3Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha
4Faculty of Oenology, Rovira i Virgili University

Contact the author

Keywords

4-ethylphenol, 4-ethylguaiacol, enzyme, phenolic compounds, fungi

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

Monitoring the establishment of a synthetic microbial community with a potential biocontrol activity against grapevine downy mildew using a microfluidic qPCR chip

Grapevine downy mildew, caused by the oomycete Plasmopara viticola, is responsible for significant economic losses each year and for a large proportion of the fungicides used in viticulture.

Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Blending wines from different grape varieties is often used in order to increase wine complexity and balance. Due to their popularity, several types of blends such as the Bordeaux blend, are protected by PDO legislation.

A new path for sustainable development. First results in a Venetian “bio-métaéthique company“ (Italy)

This paper will show the results of changes in income in a Veneto winery located in the municipality of Motta di Livenza (Treviso) in the North East of Italy, determined by the application of the “Holistic Universal Sustainability Charter” Metaethic 4.1CC “or” Sustainability Charter BIO-MétaÉthique 4.1CC “of GiESCO (Carbonneau, Cargnello, 2017).

Harvest dates, climate, and viticultural region zoning in Greece

Climate is clearly one of the most important factors in the success of all agricultural systems, influencing whether a crop is suitable to a given region, largely controlling crop production and quality, and ultimately driving economic sustainability. Today many assessments of a region’s climate comes from a combination of station and spatial climate data analyses that facilitate the evaluation of the general suitability for viticulture and potential wine styles, allows for comparisons between wine regions, and offers growers a measure of assessing appropriate cultivars and sites.