IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of redox mediators on the activity of laccase from Botrytis cinerea against volatile phenols

Effect of redox mediators on the activity of laccase from Botrytis cinerea against volatile phenols

Abstract

Volatile phenols namely 4-ethylphenol and 4-ethylguaiacol are formed by enzymatic decarboxylation of hydroxycinnamic acids by Brettanomyces yeasts to give vinylphenols and subsequent reduction of the vinyl group to form the correspondent ethylphenols. The presence of these compounds in wine affects negatively its aromatic quality, conferring unpleasant animal and phenolic odor when present in quantities above the olfactory detection threshold [1]. Several methods have been described to remove these undesirable compounds from wines, including the use laccase enzymes [2, 3]. Due to this, the aim of this work was to evaluate the effect of several natural redox mediators on the activity of Botrytis cinerea laccase against these volatile phenols.

The ability of Botrytis cinerea laccase to degrade 4-ethylphenol and 4-ethylguaiacol was studied by incubation with the enzyme in acetate buffer and model wine, and several phenolic compounds were individually assayed as mediators. Quantification of volatile phenols was accomplished by GC-MS analysis.

The only use of the Botrytis cinerea laccase was not effective in reducing or removing these off-flavors and the presence of mediators was required under these conditions. All phenolic compounds tested (caftaric acid, quercetin-3-O-rutinoside, catechin, epicatechin, ferulic acid and quercetin) favored the degradation of volatile phenols, achieving higher 4-ethylguaiacol removal percentages than that for 4-ethylphenol. These preliminary results confirm the activity of this type of enzyme against volatile phenols and provide knowledge on the effects of natural mediators on the biodegradation effectiveness of undesirable substances which may alter the quality of wine.

References

1. Petrozziello M, Asproudi A, Guaita M, Borsa D, Motta S, Panero L, Bosso A. 2014. Influence of the matrix composition on the volatility and sensory perception of 4-ethylphenol and 4-ethylguaiacol in model wine solutions. Food Chemistry 149: 197–202.
2. Lustrato G, De Leonardis A, Macciola V, Ranalli G. 2015. Preliminary lab scale of advanced techniques as new tools to reduce ethylphenols content in synthetic wine. Agro FOOD Industry Hi Tech 26:51-54.
3. Moeder M, Martin C, Koeller G. 2004. Degradation of hydroxylated compounds using laccase and horseradish peroxidase immobilized on microporous polypropylene hollow fiber membranes. Journal of Membrane Science 245:183-190.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pérez-Navarro José1,2, Osorio Alises María3, Paniagua Martínez Tania3, Giménez Pol4, Canals Joan Miquel4, Zamora Fernando4, Sánchez-Palomo Eva3, González-Vinas Miguel Ángel3 and Gómez-Alonso Sergio2,3

1Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha.
2Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha
3Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha
4Faculty of Oenology, Rovira i Virgili University

Contact the author

Keywords

4-ethylphenol, 4-ethylguaiacol, enzyme, phenolic compounds, fungi

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

A generic method to analyze vine water deficit continuously

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.

Elevational range shifts of mountain vineyards: Recent dynamics in response to a warming climate

Increasing temperatures worldwide are expected to cause a change in spatial distribution of plant species along elevational gradients and there are already observable shifts to higher elevations as a consequence of climate change for many species. Not only naturally growing plants, but also agricultural cultivations are subject to the effects of climate change, as the type of cultivation and the economic viability depends largely on the prevailing climatic conditions. A shift to higher elevations therefore represents a viable adaptation strategy to climate change, as higher elevations are characterized by lower temperatures. This is especially important in the case of viticulture because a certain wine-style can only be achieved under very specific climatic conditions. Although there are several studies investigating climatic suitability within winegrowing regions or longitudinal shifts of winegrowing areas, little is known about how fast vineyards move to higher elevations, which may represent a viable strategy for winegrowers to maintain growing conditions and thus wine-style, despite the effects of climate change. We therefore investigated the change in the spatial distribution of vineyards along an elevational gradient over the past 20 years in the mountainous wine-growing region of Alto Adige (Italy). A dataset containing information about location and planting year of more than 26000 vineyard parcels and 30 varieties was used to perform this analysis. Preliminary results suggest that there has been a shift to higher elevations for vineyards in general (from formerly 700m to currently 850 m a.s.l., with extreme sites reaching 1200 m a.s.l.), but also that this development has not been uniform across different varieties and products (i.e. vitis vinifera vs hybrid varieties and still vssparkling wines). This is important for climate change adaptation as well as for rural development. Mountain areas, especially at mid to high elevations, are often characterized by severe land abandonment which can be avoided to some degree if economically viable and sustainable land management strategies are available.

Effects of different organic amendments on soil, vine, grape and wine, in a long-term field experiment in Chinon vineyard (France)

In a long-term experiment carried out in Chinon vineyard (37, France) during 23 years, the effects of several organic amendments were studied on soil, vine, grapes and wine. Four main treatments were compared on a calcareous sandy soil: control without organic amendment, dry crushed pruning wood at 2.1.t-1.ha-1.year-1 (D1), cow manure at 10 t-1. ha-1.year-1 (D1) and cow manure applied at 20 t-1.ha-1.year-1 (D2). D1 levels were calculated to fill the annual humus losses by mineralization.

Aroma diversity of Amarone commercial wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes

La place du terroir dans le processus de patrimonialisation : l’exemple des paysages culturels viticoles du patrimoine mondial de l’Unesco

Eleven wine-growing sites are now on the UNESCO World Heritage List as Cultural Landscapes. If the viticultural character of these sites constitutes the main argument for the demonstration of their heritage value, the terroir and its biophysical and environmental characteristics tend however to appear in a minor mode compared to the aesthetic and cultural dimensions. In other words, the “specific characteristics of the soil, topography, climate, landscape and biodiversity” (OIV definition) are most often used as descriptive elements in the presentation of the sites, but it is more the aesthetic, historical,