IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of redox mediators on the activity of laccase from Botrytis cinerea against volatile phenols

Effect of redox mediators on the activity of laccase from Botrytis cinerea against volatile phenols

Abstract

Volatile phenols namely 4-ethylphenol and 4-ethylguaiacol are formed by enzymatic decarboxylation of hydroxycinnamic acids by Brettanomyces yeasts to give vinylphenols and subsequent reduction of the vinyl group to form the correspondent ethylphenols. The presence of these compounds in wine affects negatively its aromatic quality, conferring unpleasant animal and phenolic odor when present in quantities above the olfactory detection threshold [1]. Several methods have been described to remove these undesirable compounds from wines, including the use laccase enzymes [2, 3]. Due to this, the aim of this work was to evaluate the effect of several natural redox mediators on the activity of Botrytis cinerea laccase against these volatile phenols.

The ability of Botrytis cinerea laccase to degrade 4-ethylphenol and 4-ethylguaiacol was studied by incubation with the enzyme in acetate buffer and model wine, and several phenolic compounds were individually assayed as mediators. Quantification of volatile phenols was accomplished by GC-MS analysis.

The only use of the Botrytis cinerea laccase was not effective in reducing or removing these off-flavors and the presence of mediators was required under these conditions. All phenolic compounds tested (caftaric acid, quercetin-3-O-rutinoside, catechin, epicatechin, ferulic acid and quercetin) favored the degradation of volatile phenols, achieving higher 4-ethylguaiacol removal percentages than that for 4-ethylphenol. These preliminary results confirm the activity of this type of enzyme against volatile phenols and provide knowledge on the effects of natural mediators on the biodegradation effectiveness of undesirable substances which may alter the quality of wine.

References

1. Petrozziello M, Asproudi A, Guaita M, Borsa D, Motta S, Panero L, Bosso A. 2014. Influence of the matrix composition on the volatility and sensory perception of 4-ethylphenol and 4-ethylguaiacol in model wine solutions. Food Chemistry 149: 197–202.
2. Lustrato G, De Leonardis A, Macciola V, Ranalli G. 2015. Preliminary lab scale of advanced techniques as new tools to reduce ethylphenols content in synthetic wine. Agro FOOD Industry Hi Tech 26:51-54.
3. Moeder M, Martin C, Koeller G. 2004. Degradation of hydroxylated compounds using laccase and horseradish peroxidase immobilized on microporous polypropylene hollow fiber membranes. Journal of Membrane Science 245:183-190.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pérez-Navarro José1,2, Osorio Alises María3, Paniagua Martínez Tania3, Giménez Pol4, Canals Joan Miquel4, Zamora Fernando4, Sánchez-Palomo Eva3, González-Vinas Miguel Ángel3 and Gómez-Alonso Sergio2,3

1Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha.
2Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha
3Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha
4Faculty of Oenology, Rovira i Virgili University

Contact the author

Keywords

4-ethylphenol, 4-ethylguaiacol, enzyme, phenolic compounds, fungi

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

Preliminary results of the effect of post veraison pre-pruning on grape and wine composition in Tannat and Merlot

The seasonal’s climatic conditions determine the composition of grapes at harvest as they affect the vine’s physiology and development. High temperatures during the grape ripening period cause a high accumulation of sugars and degradation of fruit acidity ,and alter the synthesis of polyphenols. Therefore, some vineyard management can be applied in order to modify grapevine impact on climate variability. One example is the pre-pruning at the beginning of grape ripening, which can delay the ripening period and modify the composition of the grapes at harvest. This work aims to evaluate the pre-pruning field technique on yield components and alcohol content in wines of Tannat and Merlot varieties.

Phenology and bioclimate of grapevine varieties in the tropical region of the São Francisco Valley, Brazil

La région de la Vallée du São Francisco, situe à 9º S, est en train d’augmenter la production des vins fins les dernières années. La région présente climat du type tropical semi-aride (climat viticole à variabilité intra-annuelle selon le Système CCM Géoviticole : “très chaud, à nuits chaudes et à sécheresse forte à sub-humide” en fonction

Litchi tomato as a fumigation alternative in Washington state wine grape vineyards

The northern root-knot nematode (Meloidogyne hapla) is one of the most prevalent plant-parasitic nematodes affecting Washington State Vitis vinifera vineyards. This nematode induces small galls on roots, restricting water and nutrient uptake. In new vineyards this can impede establishment. In existing vineyards, it can exacerbate decline in chronically stressed vines. While preplant fumigation is a common strategy for M. hapla management, its efficacy is temporary and relies on broad-spectrum chemicals that undergo frequent regulatory scrutiny. The trap crop litchi tomato (Solanum sisymbriifolium) showed promise in reducing plant-parasitic nematode densities in potato. This prompted field greenhouse experiments to evaluate its potential to reduce M. hapla in V. vinifera.