IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of redox mediators on the activity of laccase from Botrytis cinerea against volatile phenols

Effect of redox mediators on the activity of laccase from Botrytis cinerea against volatile phenols

Abstract

Volatile phenols namely 4-ethylphenol and 4-ethylguaiacol are formed by enzymatic decarboxylation of hydroxycinnamic acids by Brettanomyces yeasts to give vinylphenols and subsequent reduction of the vinyl group to form the correspondent ethylphenols. The presence of these compounds in wine affects negatively its aromatic quality, conferring unpleasant animal and phenolic odor when present in quantities above the olfactory detection threshold [1]. Several methods have been described to remove these undesirable compounds from wines, including the use laccase enzymes [2, 3]. Due to this, the aim of this work was to evaluate the effect of several natural redox mediators on the activity of Botrytis cinerea laccase against these volatile phenols.

The ability of Botrytis cinerea laccase to degrade 4-ethylphenol and 4-ethylguaiacol was studied by incubation with the enzyme in acetate buffer and model wine, and several phenolic compounds were individually assayed as mediators. Quantification of volatile phenols was accomplished by GC-MS analysis.

The only use of the Botrytis cinerea laccase was not effective in reducing or removing these off-flavors and the presence of mediators was required under these conditions. All phenolic compounds tested (caftaric acid, quercetin-3-O-rutinoside, catechin, epicatechin, ferulic acid and quercetin) favored the degradation of volatile phenols, achieving higher 4-ethylguaiacol removal percentages than that for 4-ethylphenol. These preliminary results confirm the activity of this type of enzyme against volatile phenols and provide knowledge on the effects of natural mediators on the biodegradation effectiveness of undesirable substances which may alter the quality of wine.

References

1. Petrozziello M, Asproudi A, Guaita M, Borsa D, Motta S, Panero L, Bosso A. 2014. Influence of the matrix composition on the volatility and sensory perception of 4-ethylphenol and 4-ethylguaiacol in model wine solutions. Food Chemistry 149: 197–202.
2. Lustrato G, De Leonardis A, Macciola V, Ranalli G. 2015. Preliminary lab scale of advanced techniques as new tools to reduce ethylphenols content in synthetic wine. Agro FOOD Industry Hi Tech 26:51-54.
3. Moeder M, Martin C, Koeller G. 2004. Degradation of hydroxylated compounds using laccase and horseradish peroxidase immobilized on microporous polypropylene hollow fiber membranes. Journal of Membrane Science 245:183-190.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pérez-Navarro José1,2, Osorio Alises María3, Paniagua Martínez Tania3, Giménez Pol4, Canals Joan Miquel4, Zamora Fernando4, Sánchez-Palomo Eva3, González-Vinas Miguel Ángel3 and Gómez-Alonso Sergio2,3

1Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha.
2Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha
3Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha
4Faculty of Oenology, Rovira i Virgili University

Contact the author

Keywords

4-ethylphenol, 4-ethylguaiacol, enzyme, phenolic compounds, fungi

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Grapevine responses to red blotch disease – a structural-functional perspective of symptomatology development and fruit quality

Red Blotch disease caused by Grapevine red blotch-associated virus (GRBaV) is a severe concern to grape growers and winemakers in major grape-growing regions worldwide. One key aspect of all viruses, including Red Blotch, is their intimate association with cell components and anomalous structures following infection. Therefore, the objective of this study was to analyze symptomatology, vine function, fruit quality and ultrastructure of various tissues and document the relationship of ultrastructural cytopathology with the GRBaV infection in Pinot Noir and Merlot employing various microscopy techniques.

Selective and sensitive quantification of wine biogenic amines using a dispersive solid-phase extraction clean-up/concentration method

Biogenic amines exist in numerous foods, including wine. They can have aliphatic (putrescine, cadaverine, spermine, and spermidine), aromatic (tyramine and phenylethylamine) and heterocyclic structure (histamine and tryptamine)

Incidence de la nature du sol et du cépage sur la maturation du raisin, à Saint Emilion, en 1995

The AOC Saint-Emilion, one of the most prestigious in Bordeaux, is located on the right bank of the Dordogne upstream from Libourne. The vineyard is planted on Tertiary (Oligocene) and Quaternary geological formations, on which very varied soils have developed. Numerous studies have taken account of this heterogeneity and made it possible to better understand the functioning and viticultural potential of these soils (Duteau et al. 1981, Van Leeuwen, 1991).

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.

Grafting, the most sustainable way to control phylloxera over 150 years

Just over 150 years ago, phylloxera, daktulosphaera vitifoliae, was introduced to europe, and particularly france, from north america via imports of american vitis plants. This aphid, with its complex biology and life cycle, has spread rapidly to most vineyards, causing rapid and lethal decline of v. Vinifera vines due to the primary and secondary damage it causes to the roots. In response to this pest, and given the economic importance of the french wine sector, professional representatives organised into ‘agricultural societies’, scientists and public authorities rallied together to identify the exact causes, seek solutions and try to stem the serious socio-economic crisis that ensued.