IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Abstract

Saccharomyces cerevisiae, as the workhorse of alcoholic fermentation, is a major actor of winemaking. In this context, this yeast species uses alcoholic fermentation to convert sugars from the grape must into ethanol and CO2 with an outstanding efficiency: it reaches on average 92% of the maximum theoretical yield of conversion. Moreover, S. cerevisiae is also known for its great genetic diversity and plasticity that is directly related to its living environment, natural or technological and therefore to domestication. This leads to a great phenotypic diversity of metabolites production. However, the metabolic diversity is variable and depends on the pathway considered. Primary metabolites produced during fermentation stand for a great importance in wine where they significantly impact wine characteristics. Ethanol indeed does, but others too, which are found in lower concentrations: glycerol, succinate, acetate, pyruvate, alpha-ketoglutarate… Their production, which can be characterised by a yield according to the amount of sugars consumed, is known to differ from one strain to another. In the aim to improve wine quality, the selection, development and use of strains with dedicated metabolites production without genetic modifications have to rely on the natural diversity that already exists. Here we detail a screening that aims to assess this diversity of primary metabolites production in a set of 51 S. cerevisiae strains from various genetic backgrounds (wine, flor, rum, West African, sake…). To approach winemaking conditions, we used a synthetic grape must as fermentation medium and measured by HPLC six main metabolites. Results obtained pointed out great yield differences between strains and that variability is dependent on the metabolite considered. Ethanol appears as the one with the smallest variation among our set of strains, despite it’s by far the most produced. However, as long as a small variability is measurable there is room for improvement. A clear negative correlation between ethanol and glycerol yields has been observed, confirming glycerol synthesis as a good lever to impact ethanol yield. Some genetic groups have been identified as linked to high production of specific metabolites, like succinate for rum strains or alpha-ketoglutarate for wine strains. This study thus helps to define the phenotypic diversity of S. cerevisiae in a wine-like context and supports the use of ways of development of new strains exploiting natural diversity. Finally, it provides a detailed data set usable to study diversity of primary metabolites production, including common commercial wine strains.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Monnin Ludovic1,2, Nidelet Thibault1, Noble Jessica2 and Galeote Virginie1

1SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2Lallemand SAS, Blagnac, France

Contact the author

Keywords

Saccharomyces cerevisiae, Wine, Alcoholic fermentation, Central Carbon Metabolism, Metabolic diversity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Use of hyperspectral data for assessing vineyard biophysical and quality parameters in northern Italy

A total of 39 study sites from 11 commercial vineyards located in two traditional growing areas of Northern Italy were identified for airborne hyperspectral acquisition in summer 2009 with the Aisa-EAGLE Airborne Hyperspectral Imaging Sensor.

Il piano regolatore delle città’ del vino: aspetti urbanistici, economici e turistici

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Metabolomics screening of Vitis sp. interspecific hybrids to select natural ingredients with cosmetic purposes

Introducing natural ingredients using green chemistry practices is a major challenge in cosmetics industry to follow the market trend. Among the plants of cosmetic interest, vine products show a remarkable diversity of natural substances with high potential for the cosmetic and dermatological sectors. To date, research focuses on well-known compounds like E-resveratrol and E-ε-viniferin,

Use of minority grape varieties to mitigate climate change and achievement of balanced wines in Castilla y León (Spain)

Castilla y León is the third longest region in the European Union, having more than 85.000 vineyard hectares.

Unravelling Saccharomyces cerevisiae biosynthethic pathways of melatonin, serotonin and hydroxytyrosol  by UPLC-HRMS Isotopic labelling analysis

The main objective is to unravel the yeast biosynthetic pathways for MEL, SER and HT by using the respective labelled amino acids precursors: 15N2-L tryptophan and 13C-tyrosine.
The alcoholic fermentation experiments are performed with two different commercial
S cereviseae yeasts using synthetic must with the addition of the labelled compounds and the bioactive compounds were followed during the fermentation process. Six biological replicates of the fermentations were considered. MEL, SER and HT were analysed by UHPLC coupled to High Resolution Mass Spectrometry (HRMS). Accurate mass determination allowed to unequivocally distinguishing labelled and unlabelled compounds.