IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Abstract

Saccharomyces cerevisiae, as the workhorse of alcoholic fermentation, is a major actor of winemaking. In this context, this yeast species uses alcoholic fermentation to convert sugars from the grape must into ethanol and CO2 with an outstanding efficiency: it reaches on average 92% of the maximum theoretical yield of conversion. Moreover, S. cerevisiae is also known for its great genetic diversity and plasticity that is directly related to its living environment, natural or technological and therefore to domestication. This leads to a great phenotypic diversity of metabolites production. However, the metabolic diversity is variable and depends on the pathway considered. Primary metabolites produced during fermentation stand for a great importance in wine where they significantly impact wine characteristics. Ethanol indeed does, but others too, which are found in lower concentrations: glycerol, succinate, acetate, pyruvate, alpha-ketoglutarate… Their production, which can be characterised by a yield according to the amount of sugars consumed, is known to differ from one strain to another. In the aim to improve wine quality, the selection, development and use of strains with dedicated metabolites production without genetic modifications have to rely on the natural diversity that already exists. Here we detail a screening that aims to assess this diversity of primary metabolites production in a set of 51 S. cerevisiae strains from various genetic backgrounds (wine, flor, rum, West African, sake…). To approach winemaking conditions, we used a synthetic grape must as fermentation medium and measured by HPLC six main metabolites. Results obtained pointed out great yield differences between strains and that variability is dependent on the metabolite considered. Ethanol appears as the one with the smallest variation among our set of strains, despite it’s by far the most produced. However, as long as a small variability is measurable there is room for improvement. A clear negative correlation between ethanol and glycerol yields has been observed, confirming glycerol synthesis as a good lever to impact ethanol yield. Some genetic groups have been identified as linked to high production of specific metabolites, like succinate for rum strains or alpha-ketoglutarate for wine strains. This study thus helps to define the phenotypic diversity of S. cerevisiae in a wine-like context and supports the use of ways of development of new strains exploiting natural diversity. Finally, it provides a detailed data set usable to study diversity of primary metabolites production, including common commercial wine strains.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Monnin Ludovic1,2, Nidelet Thibault1, Noble Jessica2 and Galeote Virginie1

1SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2Lallemand SAS, Blagnac, France

Contact the author

Keywords

Saccharomyces cerevisiae, Wine, Alcoholic fermentation, Central Carbon Metabolism, Metabolic diversity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of press fractioning on current and phenolic compositions of Pinot noir and Pinot meunier wines

In the Champagne’s region, a complete press cycle is a series of pressure increases (squeezes) and decreases (returns). After alcoholic fermentation, the two wines (the “cuvee” and the “tailles”) obtained from grape juice fractions exhibit strong differences for numerous characteristics. Nevertheless, there is no study of the impact of the press cycle, followed after each pressure increase (22-28 steps), on wine colour, current analyses and phenolic composition. So, the aim of this study (vintage 2020) was to investigate the composition changes of Pinot noir and Pinot meunier wines, produced from 22-28 grape juices isolated for each complete pressing cycle.

Techniques of delimitation in France

La pratique de la délimitation des aires des Appellations d’Origine Contrôlées françaises découle de la définition de la notion de terroir en Appellation

Exploring changes in browning kinetics, color, and antioxidants due to dealcoholization of wine

The global consumer demand for low or non-alcoholic wine is growing steadily in recent years, driven by health concerns, religious beliefs, and personal taste preferences etc.. Consequently, the removal of alcohol from wine can significantly alter its chemical and sensory properties, including color, aroma, and taste, which make a significant challenge for consumer to accept these products. Ethanol plays a crucial role in various chemical reactions and interactions that contribute to the development of wine’s characteristics.

Redwine project: how to valorize CO2 and effluents from wineries in vineyards and winemaking with microalgae biomass

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU green deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral eu economy by 2050. The deal strongly encourages GHG reducing measures at local, national and european levels. The redwine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq.

Chemistry and analysis of key volatile compounds of wine and their precursors in grape

A relatively small number of the many volatile substances of wine, often present at trace
concentrations, are considered as key volatile compounds. These compounds often exist in grapes
under poorly odoriferous or non volatile forms as aroma precursors.