IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Abstract

Saccharomyces cerevisiae, as the workhorse of alcoholic fermentation, is a major actor of winemaking. In this context, this yeast species uses alcoholic fermentation to convert sugars from the grape must into ethanol and CO2 with an outstanding efficiency: it reaches on average 92% of the maximum theoretical yield of conversion. Moreover, S. cerevisiae is also known for its great genetic diversity and plasticity that is directly related to its living environment, natural or technological and therefore to domestication. This leads to a great phenotypic diversity of metabolites production. However, the metabolic diversity is variable and depends on the pathway considered. Primary metabolites produced during fermentation stand for a great importance in wine where they significantly impact wine characteristics. Ethanol indeed does, but others too, which are found in lower concentrations: glycerol, succinate, acetate, pyruvate, alpha-ketoglutarate… Their production, which can be characterised by a yield according to the amount of sugars consumed, is known to differ from one strain to another. In the aim to improve wine quality, the selection, development and use of strains with dedicated metabolites production without genetic modifications have to rely on the natural diversity that already exists. Here we detail a screening that aims to assess this diversity of primary metabolites production in a set of 51 S. cerevisiae strains from various genetic backgrounds (wine, flor, rum, West African, sake…). To approach winemaking conditions, we used a synthetic grape must as fermentation medium and measured by HPLC six main metabolites. Results obtained pointed out great yield differences between strains and that variability is dependent on the metabolite considered. Ethanol appears as the one with the smallest variation among our set of strains, despite it’s by far the most produced. However, as long as a small variability is measurable there is room for improvement. A clear negative correlation between ethanol and glycerol yields has been observed, confirming glycerol synthesis as a good lever to impact ethanol yield. Some genetic groups have been identified as linked to high production of specific metabolites, like succinate for rum strains or alpha-ketoglutarate for wine strains. This study thus helps to define the phenotypic diversity of S. cerevisiae in a wine-like context and supports the use of ways of development of new strains exploiting natural diversity. Finally, it provides a detailed data set usable to study diversity of primary metabolites production, including common commercial wine strains.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Monnin Ludovic1,2, Nidelet Thibault1, Noble Jessica2 and Galeote Virginie1

1SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2Lallemand SAS, Blagnac, France

Contact the author

Keywords

Saccharomyces cerevisiae, Wine, Alcoholic fermentation, Central Carbon Metabolism, Metabolic diversity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

For a phenomenology of terroir. A consumers’ perspective

This study investigates the notion of terroir by applying a phenomenological approach, focusing on the subjective experience of consumers. We will consider how terroir is described by consumers in order to gauge their subjective viewpoint and understand their way of describing and defining this spatiality.

Quantification of newly identified C8 aroma compounds in musts and wines as an analytical tool for the early detection of Fresh Mushroom Off-Flavor

The Fresh Mushroom Off-Flavor (FMOff) is a concerning undesirable aroma in wine specific of certain vintages, characterized by a typical button mushroom aroma. The appearance of this off-flavor is linked to the presence of certain fungus on the grape [1-3].

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Deciphering the color of rosé wines using polyphenol targeted metabolomics

The color of rosés wines is extremely diverse and a key element in their marketing. It is due to the presence of red anthocyanins extracted from grape skins and pigments formed from them and other wine constituents during wine-making.