IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Abstract

Saccharomyces cerevisiae, as the workhorse of alcoholic fermentation, is a major actor of winemaking. In this context, this yeast species uses alcoholic fermentation to convert sugars from the grape must into ethanol and CO2 with an outstanding efficiency: it reaches on average 92% of the maximum theoretical yield of conversion. Moreover, S. cerevisiae is also known for its great genetic diversity and plasticity that is directly related to its living environment, natural or technological and therefore to domestication. This leads to a great phenotypic diversity of metabolites production. However, the metabolic diversity is variable and depends on the pathway considered. Primary metabolites produced during fermentation stand for a great importance in wine where they significantly impact wine characteristics. Ethanol indeed does, but others too, which are found in lower concentrations: glycerol, succinate, acetate, pyruvate, alpha-ketoglutarate… Their production, which can be characterised by a yield according to the amount of sugars consumed, is known to differ from one strain to another. In the aim to improve wine quality, the selection, development and use of strains with dedicated metabolites production without genetic modifications have to rely on the natural diversity that already exists. Here we detail a screening that aims to assess this diversity of primary metabolites production in a set of 51 S. cerevisiae strains from various genetic backgrounds (wine, flor, rum, West African, sake…). To approach winemaking conditions, we used a synthetic grape must as fermentation medium and measured by HPLC six main metabolites. Results obtained pointed out great yield differences between strains and that variability is dependent on the metabolite considered. Ethanol appears as the one with the smallest variation among our set of strains, despite it’s by far the most produced. However, as long as a small variability is measurable there is room for improvement. A clear negative correlation between ethanol and glycerol yields has been observed, confirming glycerol synthesis as a good lever to impact ethanol yield. Some genetic groups have been identified as linked to high production of specific metabolites, like succinate for rum strains or alpha-ketoglutarate for wine strains. This study thus helps to define the phenotypic diversity of S. cerevisiae in a wine-like context and supports the use of ways of development of new strains exploiting natural diversity. Finally, it provides a detailed data set usable to study diversity of primary metabolites production, including common commercial wine strains.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Monnin Ludovic1,2, Nidelet Thibault1, Noble Jessica2 and Galeote Virginie1

1SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2Lallemand SAS, Blagnac, France

Contact the author

Keywords

Saccharomyces cerevisiae, Wine, Alcoholic fermentation, Central Carbon Metabolism, Metabolic diversity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Soil survey and continuous classification for terroir delineation in the “Colli Orientali del Friuli” wine production area

The combination of a non-parametric dissimilarity index with auger boring recordings was tested in a project of soil suitability evaluation for quality wine production in a 2000-ha hill slope portion of the “Colli Orientali del Friuli” AOC district (Italy).

How geographical origin and vineyard management influence cv. Cabernet-Sauvignon in Chile – Machine learning based quality prediction

Aims: The aims of this study were to i) characterize the impact of geographical origin and viticulture treatments on Chilean Cabernet-Sauvignon, and ii) develop machine learning models to predict its quality. 

Within-vineyard spatial variation impacts methoxypyrazine accumulation in the rachis of Cabernet-Sauvignon

To investigate the impact of spatial variation in vine vigour on the accumulation of methoxypyrazines in the rachis of Cabernet-Sauvignon. Cabernet-Sauvignon rachis has been shown to contain significantly higher concentrations

Winemaking processes discrimination by using qNMR metabolomics

AIM: Metabolomics in food science has been increasingly used over the last twenty years. Among the tools used for wine, qNMR has emerged as a powerful tool to discern wines based on environmental factors such as geographical origin, grape variety and vintage (Gougeon et al., 2019a).

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).