IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Abstract

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality. During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition. Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in anaerobiosis. Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol type on fermentation kinetics parameters. Moreover, studies done until today analyzed a limited number of yeasts strains. For this reason, the aim of this work is to compare the fermentation performances of 27 Saccharomyces cerevisiae wine strains with phytosterols and ergosterol on two conditions: sterol limitation and osmotic stress (the most common stress during fermentation due to high concentrations of sugars).

Experiments were performed in 300 mL fermenters without oxygen and monitored in order to obtain kinetics parameters. Cell count and cell viability were measured around 80% of fermentation progress. Central carbon metabolism (CCM) metabolites were quantified at the end of fermentation.

Principal Component Analysis revealed the huge phenotype diversity of strains in this study. Analysis of variance indicated that both the strain and the type of sterol explained the differences on yeast fermentation performances. Strains with a high viability at the end of the fermentation finished fermenting earlier. Finally, ergosterol allowed a better completion of fermentation in both stress conditions tested.

These results highlighted the role of sterols in wine alcoholic fermentation to ensure yeast growth and avoid sluggish or stuck fermentations. Interestingly, sterol type affected yeast viability, biomass, kinetics parameters and biosynthesis of CCM metabolites.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Girardi Piva Giovana1, Mouret Jean-Roch1, Galeote Virginie1, Legras Jean-Luc1, Casalta Erick1, Oritz-Julien Anne2, Nidelet Thibault1, Sanchez Isabelle3, Pradal Martine1 and Macna Faiza1

1SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2 Lallemand SAS, Blagnac, France 
3MISTEA, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author

Keywords

Wine yeast, sterol starvation, osmotic stress, yeast membrane, alcoholic fermentation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Can early defoliation improve fruit composition of Tempranillo grapevines in the semi-arid terroir of Utiel-Requena, Spain?

Early defoliation has been found a useful tool to reduce cluster compactness and to improve fruit composition in vigorous sites of different viticultural areas. Our objective was to test the usefulness

Le Pinot noir dans la zone AOC des “Colli Orientali del Friuli” (nord-est de l’Italie) : influence de la forme de taille sur les paramètres viticoles et œnologiques du raisin et du vin

Pinot noir is an interesting vat variety for the high quality products it provides in the most suitable areas. In France, the most important Pinot Noir growing areas are Burgundy, Champagne, Alsace and the Loire. In Italy, Pinot Noir is grown almost exclusively in the northern regions of Trentino-Alto Adige, Lombardy and Friuli-Venezia Giulia.

Evaluation of three alternative strategies for the long-term remediation of reductive off-odours in wines

Sulfur-like off-odours are a problem caused by the presence of free forms of volatile sulphur compounds (VSCs). H2S is the most frequently found above its odour threshold

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

Survey of phenological stages of disease-resistant varieties in Friuli Venezia Giulia region

Context and purpose of the study. The primary fungal diseases affecting grapevines in Europe are downy mildew and powdery mildew.