IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Abstract

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality. During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition. Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in anaerobiosis. Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol type on fermentation kinetics parameters. Moreover, studies done until today analyzed a limited number of yeasts strains. For this reason, the aim of this work is to compare the fermentation performances of 27 Saccharomyces cerevisiae wine strains with phytosterols and ergosterol on two conditions: sterol limitation and osmotic stress (the most common stress during fermentation due to high concentrations of sugars).

Experiments were performed in 300 mL fermenters without oxygen and monitored in order to obtain kinetics parameters. Cell count and cell viability were measured around 80% of fermentation progress. Central carbon metabolism (CCM) metabolites were quantified at the end of fermentation.

Principal Component Analysis revealed the huge phenotype diversity of strains in this study. Analysis of variance indicated that both the strain and the type of sterol explained the differences on yeast fermentation performances. Strains with a high viability at the end of the fermentation finished fermenting earlier. Finally, ergosterol allowed a better completion of fermentation in both stress conditions tested.

These results highlighted the role of sterols in wine alcoholic fermentation to ensure yeast growth and avoid sluggish or stuck fermentations. Interestingly, sterol type affected yeast viability, biomass, kinetics parameters and biosynthesis of CCM metabolites.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Girardi Piva Giovana1, Mouret Jean-Roch1, Galeote Virginie1, Legras Jean-Luc1, Casalta Erick1, Oritz-Julien Anne2, Nidelet Thibault1, Sanchez Isabelle3, Pradal Martine1 and Macna Faiza1

1SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2 Lallemand SAS, Blagnac, France 
3MISTEA, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author

Keywords

Wine yeast, sterol starvation, osmotic stress, yeast membrane, alcoholic fermentation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Seasonal dynamics of water and sugar compartmentalization in grape clusters under deficit irrigation

Water stress triggers functional compartmentalization in grapevines, influencing how resources are allocated to different plant organs.

Harvest dates – temperature relationships and thermal requirements of winegrape varieties in Greece: observed and future climate responses

Air temperature is arguably one of the most decisive factors for winegrape varieties developmental cycle, ripening potential and yield.

Ripening of Vitis vinifera grapes varieties in São Joaquim, a new wine growing region, Southern Brazil

This report has investigated the ripening characteristics of Vitis vinifera grapes Cabernet Franc, Merlot, Sangiovese and Syrah in two consecutive vintages (2006 and 2007), in order to evaluate the adaptation from these recently varieties planted in São Joaquim town, Santa Catarina State, Brazil.

Illuminating vineyard management: Elevating operational efficiency through advanced sensing and data analytics

In this video recording of the IVES science meeting 2024, Luca Brillante (California State University, Fresno, USA) speaks about vineyard management, advanced sensing and data analytics. This presentation is based on an original article accessible for free on OENO One.

Soil quality in Beaujolais vineyard. Importance of pedology and cultural practices

A pedological study was carried out from 2009 to 2017 in Beaujolais vineyard, to improve physical and chemical knowledge of soils. It was completed in 2016 and 2017 by the current study, dealing with microbial aspects, in order to build a reference frame for improved advice in soil management. Microbial biomass was measured on representative plots of the six most common soil types identified in Beaujolais and, for each soil type, on plots with different levels of the main impacting parameters: total organic carbon, pH, cation exchange capacity, extractable copper. A total of 59 soil samples were collected. Confirming the results of various trials carried out in Beaujolais over the past 20 years, the results of the present study showed that the soils were still alive, but exhibited a large variability of biological parameters, which appeared dependant on both pedological and anthropic factors. Therefore, a good interpretation of biological parameters and advice for vine growers must rely on a pedologically-based referential with differentiated main driving factors. For example, the control of pH is of primary importance in granitic soils and in no way organic matter addition can improve soil quality if pH is too low. Conversely, in calcareous soils, biological parameters are more directly affected by direct or indirect (cover crops for example) inputs of organic matter. The use of biological parameters, such as microbial biomass, is of great potential value to improve advice on agro-viticultural practices (soil management, fertilization, liming, etc.), basis of a sustainable wine production on fragile soils.