IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the impact of nitrogen additions and isothermal temperature on aroma production in oenological fermentation

Study of the impact of nitrogen additions and isothermal temperature on aroma production in oenological fermentation

Abstract

Nitrogen and temperature are two important factors that influence wine fermentation and volatile compounds production. Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas. To address the problems related to nitrogen deficiencies, nitrogen additions during alcoholic fermentation have been developed. The consequences of such additions on the main metabolism are well known. However, their impact on the synthesis of aromas has been poorly understood. Fermentation temperature is another variable that affects the production of fermentative aromas in wine. For example, high concentrations of esters are obtained at low temperatures whereas higher alcohols are obtained at high temperature. Nevertheless, the impact of fermentation temperature on aroma production kinetics has never been studied in interaction with nitrogen addition during fermentation.So, the main objective of this study was to evaluate the impact of nitrogen addition at different fermentation temperature on both the fermentation kinetics and aroma synthesis kinetics thanks to online GC-MS system. We also studied the effect of the initial nitrogen content of the must and the quantity of added nitrogen. To study the impact of these 3 parameters simultaneously, we used a Box-Behnken design with response surface modeling and GAM modeling.Our results indicated that all three factors studied had important effects on fermentation and aroma production kinetics. These parameters do not impact in the same way the different families of volatile compounds. For example, high temperatures induce an important evaporation for ethyl esters and isoamyl acetate, while an increase in the production of isobutyl acetate is observed when the temperature increase. Moreover, the study of these three factors simultaneously allowed us to show that propanol is not only a marker of the presence of assimilable nitrogen in the medium, but above all a marker of cellular activity.This work enables to get a deeper understanding of the regulation of the yeast metabolism. It also underlines the possibility to refine the organoleptic profile of a wine by targeting the ideal combination of initial and added nitrogen concentration and fermentation temperature.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Godillot Joséphine1, Aguera Evelyne2, Sanchez Isabelle3, Baragatti Meili3, Perez Marc1, Sablayrolles Jean-Marie1, Farines Vincent1 and Mouret Jean-Roch1

1SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2UE Pech Rouge, INRAE, Gruissan, France
3MISTEA, INRAE, Institut Agro, Montpellier, France 

Contact the author

Keywords

Alcoholic fermentation – Nitrogen additions  – Temperature – Fermentative aromas – Statistical modeling

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

New use of natural silk fiber as a fining agent in wines

Undesirable compounds in wine, like OTA, biogenic amines, and pesticide residues, can negatively affect its quality and pose health risks to consumers. In addition, an excess of tannins can lead to an unpleasant rise in astringency and bitterness, which makes tannins another target of reduction.

How to improve the success of dead vine replacement: insights into the impacts of young plant‘s environment 

Grapevine faces multiple biotic and/or abiotic stresses, which are interrelated. Depending on their incidence, they can have a negative impact on the development and production of the plant, but also on its longevity, leading to vine dieback. One of the consequences of vine dieback on production is the increased replacement rate of dead or missing vines within a parcel.

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective.

Functionality of different inter-stimulus rinse protocols for the sensory analysis of wildfire affected wines

From the effect of global climate change, wildfire occurrence during grape ripening has increased. These wildfires produce smoke that can carry organic compounds to a vineyard. These smoke compounds are adsorbed in the grape berry and result in wines with elevated levels of smoke-related phenols. These wines are described as having a smokey, burnt, and dirty aroma (Kristic et al, 2015). Not only are volatile phenols carried by smoke, but additionally glycoconjugate forms of these phenols are present as will. These have been found to have a large impact on the flavor of wines, being the cause of a lasting ashy aftertaste post consumption (Parker et al, 2012). When evaluating the sensory profile of these wines when tasted one after the other, there is an observed problem due to the lasting nature of these undesirable attributes and high level of carry-over from sample to sample. The aim of this work is to evaluate the extent this carryover occurs, along with the best sensory practices to mitigate its influence via different inter-stimulus rinse protocols.

Metatranscriptomic analysis of “aszú” berries: the potential role of the most important species of the grape microbiota in the aroma of wines with noble rot

Botrytis cinerea has more than 1200 host plants and is one of the most important plant pathogens in viticulture. Under certain environmental conditions, it can lead to the development of a noble rot, which results in a specific metabolic profile, altering physical texture and chemical composition. The other microbes involved in this process and their functional genes are poorly characterised. We have generated metatranscriptomic [1,2] and DNA metabarcoding data from three months of the Furmint grape variety, representing the four phases of noble rot, from healthy berries to completely dried berries.