IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the impact of nitrogen additions and isothermal temperature on aroma production in oenological fermentation

Study of the impact of nitrogen additions and isothermal temperature on aroma production in oenological fermentation

Abstract

Nitrogen and temperature are two important factors that influence wine fermentation and volatile compounds production. Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas. To address the problems related to nitrogen deficiencies, nitrogen additions during alcoholic fermentation have been developed. The consequences of such additions on the main metabolism are well known. However, their impact on the synthesis of aromas has been poorly understood. Fermentation temperature is another variable that affects the production of fermentative aromas in wine. For example, high concentrations of esters are obtained at low temperatures whereas higher alcohols are obtained at high temperature. Nevertheless, the impact of fermentation temperature on aroma production kinetics has never been studied in interaction with nitrogen addition during fermentation.So, the main objective of this study was to evaluate the impact of nitrogen addition at different fermentation temperature on both the fermentation kinetics and aroma synthesis kinetics thanks to online GC-MS system. We also studied the effect of the initial nitrogen content of the must and the quantity of added nitrogen. To study the impact of these 3 parameters simultaneously, we used a Box-Behnken design with response surface modeling and GAM modeling.Our results indicated that all three factors studied had important effects on fermentation and aroma production kinetics. These parameters do not impact in the same way the different families of volatile compounds. For example, high temperatures induce an important evaporation for ethyl esters and isoamyl acetate, while an increase in the production of isobutyl acetate is observed when the temperature increase. Moreover, the study of these three factors simultaneously allowed us to show that propanol is not only a marker of the presence of assimilable nitrogen in the medium, but above all a marker of cellular activity.This work enables to get a deeper understanding of the regulation of the yeast metabolism. It also underlines the possibility to refine the organoleptic profile of a wine by targeting the ideal combination of initial and added nitrogen concentration and fermentation temperature.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Godillot Joséphine1, Aguera Evelyne2, Sanchez Isabelle3, Baragatti Meili3, Perez Marc1, Sablayrolles Jean-Marie1, Farines Vincent1 and Mouret Jean-Roch1

1SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2UE Pech Rouge, INRAE, Gruissan, France
3MISTEA, INRAE, Institut Agro, Montpellier, France 

Contact the author

Keywords

Alcoholic fermentation – Nitrogen additions  – Temperature – Fermentative aromas – Statistical modeling

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Portable NIR spectroscopy for nutrient profiling in rootstock and scion material: enhancing decision-making in the grafting industry

The success of grafting in viticulture is deeply influenced by the nutrient composition of both rootstock and scion materials. Key components such as nitrogen and carbohydrates play a crucial role in graft compatibility, establishment, and overall plant vigor [1].

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Carbon sequestration in vineyard soils: biomass utilization in a climate change scenario–the SUSTAIN project

The SUSTAIN project aims at assessing the soil organic carbon (SOC) stock and vulnerability in vineyard soils under a climate change scenario.

Effect of ozone application for low-input postharvest dehydration of wine grapes

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g., sweet, dry/reinforced).

Typology of Terroirs around the world

It seems implausible that the geographical development of the vineyards could have been affected by a shift in the positions of the Earth’continents