IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Assyrtiko wines of Santorini produced by different autochthonous yeasts: Differences in aromatic and organoleptic profiles

Assyrtiko wines of Santorini produced by different autochthonous yeasts: Differences in aromatic and organoleptic profiles

Abstract

Different yeasts were isolated from spontaneous fermentation of Assyrtiko grape must in Santorini Island, Greece. Molecular typing revealed the presence of three Saccharomyces cerevisiae strains (S9, S13, S24) and one strain of the yeast species Nakazawaea ishiwadae (N.i). The four isolated strains were further tested in laboratory scale fermentations of Assyrtiko must in pure inoculation cultures and in sequential inoculation (72 hours) of each S. cerevisiae strain with the strain of N. ishiwadae. All fermentation trials were realised in duplicate.

 Fermentation kinetics were followed by HPLC, while the volatile composition of the final products was determined by GC-MS (qualitative analysis) and GC-FID (quantitative analysis). Sensory evaluation of the samples took place by a panel of 10 trained panellists. In general, the fermentation rate in trials with S.13 and N.i. was lower than the rest, while trials with S9 and S24 resulted in higher ethanol contents in the final product but without statistically important differences. The wines fermented with the S24 and N.i. strains were characterised by the highest concentrations of acetic acid (0.9 and 0.7 g/L respectively) and with S13 by the highest concentration of glycerol (15g/L). In terms of aromatic profile, the trials contacted with S9 were up to 3.5-folds richer in volatile compounds responsible for the fruity character in wines. In addition, the fermentations with S13 and N.i. were about 3-folds richer in compounds characterized by floral character (e.g. phenethyl alcohol, tyrosol etc.), while the most abundant group of compounds in fermentations contacted with S24 strain were the oxidation esters (e.g. ethyl hydrogen succinate). In the sequential inoculations apart from a delay in the completion of alcoholic fermentations, a comparable with single strains fermentations trend in ethanol production and reducing sugar consumption was observed. Intensification of the production of acetic acid, oxidation esters, several ethyl esters and higher alcohols (C5, C6) was also observed. Significantly lower (5-fold) contents of higher alcohols and their corresponding esters, responsible for floral aromas for ferments with N13 compared to ferments with S13 was also noted. Regarding the production of esters responsible for tropical and citrus aromas (e.g. isoamyl acetate, ethyl hexanoate), the highest content was observed in ferments with N13 (1.32 ppm) and N24 (1.97 ppm) while the lowest in ferments with N9 (0.99 ppm). The concentration of most esters was increased for all trials after sequential inoculation compared to the corresponding trials contacted with pure cultures.  The results from the organoleptic analysis are in line with the chemical analysis. Even though, all four newly isolated strains have the ability to ferment and produce dry wines, the most preferred wines by the panel were those produced by S9 and S13 strains.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Kallithraka Stamatina1, Christofi Stefania1, Dimopoulou Maria1, Tsapou Evangelia Anastasia1 and Papanikolaou Seraphim1

1Department of Food Science and Human Nutrition, Laboratory of enology and alcoholic drinks, Agricultural University of Athens 

Contact the author

Keywords

Saccharomyces cerevisiae, Nakazawaea ishiwadae, wine volatile content, sensory analysis, fermentation kinetics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Comparative QTL mapping of phenology traits in three cross populations of grapevine

Long-term studies on grapevine phenology have clearly demonstrated that global warming is affecting phenological events, leading to an anticipation in their timing, and negatively impacting grape yield and berry quality. Therefore, dissecting the genetic determinants involved in the plant regulation of the phenological stages of budburst, flowering, veraison and ripening can improve our knowledge of the underlying mechanisms and support plant breeding programs and the advancement of vineyard management strategies. We report here the results of a QTL mapping experiment conducted on three segregating populations obtained from the crossing of ‘Cabernet Sauvignon’ and ‘Corvina’, ‘Corvina’ and the hybrid ‘Solaris’ and ‘Rhine Riesling’ and ‘Cabernet Sauvignon’.

Adapting the vineyard to climate change in warm climate regions with cultural practices

Since the 1980s global regime shift, grape growers have been steadily adapting to a changing climate. These adaptations have preserved the region-climate-cultivar rapports that have established the global trade of wine with lucrative economic benefits since the middle of 17th century. The advent of using fractions of crop and actual evapotranspiration replacement in vineyards with the use of supplemental irrigation has furthered the adaptation of wine grape cultivation. The shift in trellis systems, as well as pruning methods from positioned shoot systems to sprawling canopies, as well as adapting the bearing surface from head-trained, cane-pruned to cordon-trained, spur-pruned systems have also aided in the adaptation of grapevine to warmer temperatures. In warm climates, the use of shade cloth or over-head shade films not only have aided in arresting the damage of heat waves, but also identified opportunities to reduce the evapotranspiration from vineyards, reducing environmental footprint of vineyard. Our increase in knowledge on how best to understand the response of grapevine to climate change was aided with the identification of solar radiation exposure biomarker that is now used for phenotyping cultivars in their adaptability to harsh environments. Using fruit-based metrics such as sugar-flavonoid relationships were shown to be better indicators of losses in berry integrity associated with a warming climate, rather than solely focusing on region-climate-cultivar rapports. The resilience of wine grape was further enhanced by exploitation of rootstock × scion combinations that can resist untoward droughts and warm temperatures by making more resilient grapevine combinations. Our understanding of soil-plant-atmosphere continuum in the vineyard has increased within the last 50 years in such a manner that growers are able to use no-till systems with the aid of arbuscular mycorrhiza fungi inoculation with permanent cover cropping making the vineyard more resilient to droughts and heat waves. In premium wine grape regions viticulture has successfully adapted to a rapidly changing climate thus far, but berry based metrics are raising a concern that we may be approaching a tipping point.

Keg wine on tap: a sustainability-oriented innovation

How could the wine industry be more sustainable? To answer this, an Interreg French-Swiss project gathered researchers to help a French keg producer and a Swiss wine distributor make their innovation more ecological, social and economical. What innovation? A reusable plastic keg with a disposable airtight pouch inside.

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Montpellier vine & wine sciences (M-WineS)

The Occitanie Region is the first vine-growing area in France: 270 000 hectares of vineyard and an annual production of 15 million hectoliters. Its annual income reaches 1 900 million euros, of which 900 million euros in export.The vine and wine sector is facing many issues: inputs reduction, adaptation to climate change, maintaining the production competitiveness, digital tools integration in production and transformation processes, and the production of quality wines meeting the consumer demand.