IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Assyrtiko wines of Santorini produced by different autochthonous yeasts: Differences in aromatic and organoleptic profiles

Assyrtiko wines of Santorini produced by different autochthonous yeasts: Differences in aromatic and organoleptic profiles

Abstract

Different yeasts were isolated from spontaneous fermentation of Assyrtiko grape must in Santorini Island, Greece. Molecular typing revealed the presence of three Saccharomyces cerevisiae strains (S9, S13, S24) and one strain of the yeast species Nakazawaea ishiwadae (N.i). The four isolated strains were further tested in laboratory scale fermentations of Assyrtiko must in pure inoculation cultures and in sequential inoculation (72 hours) of each S. cerevisiae strain with the strain of N. ishiwadae. All fermentation trials were realised in duplicate.

 Fermentation kinetics were followed by HPLC, while the volatile composition of the final products was determined by GC-MS (qualitative analysis) and GC-FID (quantitative analysis). Sensory evaluation of the samples took place by a panel of 10 trained panellists. In general, the fermentation rate in trials with S.13 and N.i. was lower than the rest, while trials with S9 and S24 resulted in higher ethanol contents in the final product but without statistically important differences. The wines fermented with the S24 and N.i. strains were characterised by the highest concentrations of acetic acid (0.9 and 0.7 g/L respectively) and with S13 by the highest concentration of glycerol (15g/L). In terms of aromatic profile, the trials contacted with S9 were up to 3.5-folds richer in volatile compounds responsible for the fruity character in wines. In addition, the fermentations with S13 and N.i. were about 3-folds richer in compounds characterized by floral character (e.g. phenethyl alcohol, tyrosol etc.), while the most abundant group of compounds in fermentations contacted with S24 strain were the oxidation esters (e.g. ethyl hydrogen succinate). In the sequential inoculations apart from a delay in the completion of alcoholic fermentations, a comparable with single strains fermentations trend in ethanol production and reducing sugar consumption was observed. Intensification of the production of acetic acid, oxidation esters, several ethyl esters and higher alcohols (C5, C6) was also observed. Significantly lower (5-fold) contents of higher alcohols and their corresponding esters, responsible for floral aromas for ferments with N13 compared to ferments with S13 was also noted. Regarding the production of esters responsible for tropical and citrus aromas (e.g. isoamyl acetate, ethyl hexanoate), the highest content was observed in ferments with N13 (1.32 ppm) and N24 (1.97 ppm) while the lowest in ferments with N9 (0.99 ppm). The concentration of most esters was increased for all trials after sequential inoculation compared to the corresponding trials contacted with pure cultures.  The results from the organoleptic analysis are in line with the chemical analysis. Even though, all four newly isolated strains have the ability to ferment and produce dry wines, the most preferred wines by the panel were those produced by S9 and S13 strains.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Kallithraka Stamatina1, Christofi Stefania1, Dimopoulou Maria1, Tsapou Evangelia Anastasia1 and Papanikolaou Seraphim1

1Department of Food Science and Human Nutrition, Laboratory of enology and alcoholic drinks, Agricultural University of Athens 

Contact the author

Keywords

Saccharomyces cerevisiae, Nakazawaea ishiwadae, wine volatile content, sensory analysis, fermentation kinetics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Terroir et variabilité microclimatique : pour une approche à l’échelle de la parcelle

The climatic component is one of the elements of the zoning of viticultural potential, alongside the geological and pedological components (Morlat, 1989; Lebon et al , 1993). Many climatic indices have thus been defined to estimate the potential for wine production at the scale of a region or a country (Carbonneau et al ., 1992). The main climatic variables used are temperature and radiation. We note in particular the indices of Branas, Huglin and Ribereau-Gayon (Huglin, 1986). However, few studies have been undertaken on the spatial variability of microclimatic conditions at the scale of a vineyard, a valley, or even a municipality.

Exemples de zonage au Chili et en Amérique Latine

Ce document présente la situation viticole des appellations d’origine en Argentine, Brésil, Chili et Uruguay.
L’étude s’est restreinte uniquement à ces 4 pays, bien qu’il en existe d’autres avec une production viticole d’une certaine importance.

Influence of vine spacing on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

L’objectif de cette étude est analyser l’influence de la densité de plantation sur l’état hydrique (potentiel hydrique), le comportement productif (matière sèche et rendement) et la expression qualitative (poids de baie, degrée Brix, pH, acidité totale, concentration polyphénolique) de la varieté Tempranillo dans la Vallée du Douro, à l’A.O. Cigales.

Relations entre critères sensoriels et analytiques des vins et des vendanges de Cabernet franc issus de terroirs et de millésimes différents en Val de Loire. Essai de caractérisation de la typicité

En France, la notion de Terroir a largement contribué à la réputation de nombreux vignobles. Elle a permis aussi d’accentuer la sensibilité des consommateurs, à la notion d’origine d’un produit. L’avenir de nombreux vignobles français semble lié à la capacité à innover en produisant des vins de qualité possédant en plus une typicité, aspect sensoriel susceptible de s’affirmer comme un facteur de vente auprès des futurs clients éduqués sur le plan du goût.

Acumulación de materia seca, orientada a valorar la fijación de carbono, en función del aporte de riego y la pluviometría, en Cabernet-Sauvignon a lo largo de 15 años

The vineyard is capable of fixing carbon in its permanent structure from atmospheric carbon dioxide, through the process of gas exchange and the performance of photosynthesis. The photosynthetic capacity of the vineyard depends on the water resources that the plant may have at its disposal, so the amount of dry matter, derived from the processed photosynthates, that it can store will depend on the water regime of the crop, both in the annually renewable organs as in permanent parts.