IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 MicrobiomeSupport: Towards coordinated microbiome R&I activities in the food system to support (EU and) international bioeconomy goals

MicrobiomeSupport: Towards coordinated microbiome R&I activities in the food system to support (EU and) international bioeconomy goals

Abstract

Microbiomes have crucial roles in maintaining life on Earth, and their functions drive human, animal, plant and environmental health. The microbiome research landscape is developing rapidly and is performed in many different science fields using similar concepts but mostly one (eco)system at-a-time. Thus, we are only starting to unravel and understand the interconnectedness of microbiomes across the (eco)systems.

MicrobiomeSupport is a Coordination and Support Action with the overall objective to establish an international network of experts and stakeholders in the field of microbiome food systems research and assess applicability and impact of the microbiomes on the food system.

Key outcomes include:

  • database containing information on microbiome activities, programmes and facilities along the food chain and beyond in the EU and worldwide
  • recommendations for an internationally agreed microbiome definition, best practices and standards, as well as consistent protocols in research
  • establishment of a dialogue between multiple stakeholders (i.e. representatives from science, industry, policy, funding and regulatory bodies)
  • publications showcasing microbiomes potential and current hurdles for their full exploitation
  • educational materials for the general public

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Kazou Maria1, Tsakalidou Effie1, Sessitsch Angela2 and Kostic Tanja2

1Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
2AIT Austrian Institute of Technology GmbH, Bioresources, Tulln, Austria

Contact the author

Keywords

Microbiome, MicrobiomeSupport, Coordination and Support Action

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of different plant fibers on the elimination of undesirable compounds in red wine 

The presence of undesirable compounds in wines, such as ota, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. Additionally, an excess of tannins can produce an undesirable increase in the astringency and bitterness of the wine, so tannins are also a target for reduction. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity.

Multispectral data from Sentinel-2 as a tool for monitoring late frost events on vineyards

Aim: Climate change is altering some aspects of winegrape production with an advancement of phenological stages which may endanger viticultural areas in the event of a late frost. This study aims to evaluate the potential of satellite-based remote sensing to assess the damage and the recovery time after late frost events.

Effects of Silver Thiosulphate and Salicylic Acid on the long-term maintenance of the embryogenic callus of Vitis vinifera

New Plant Breeding Techniques (NPBTs) have the potential to revolutionize the genetic improvement of grapevine. However, the practical application of these techniques is limited by several challenges, such as the difficulty in generating embryogenic calluses, maintaining their competence during in vitro cultivation, and regenerating plants without defects. To overcome these challenges, we conducted a study to test the effect of two treatments on callus cultures derived from different grapevine varieties, with and without embryogenic competence. The tested substances were Silver Thiosulphate (STS) an ethylene inhibitor, and Salicylic Acid (SA), an elicitor with different effects depending on the concentration of use beyond the ethylene inhibitor activity.

Evaluation of uhph treatment as an alternative to heat treatment prior to the use of proteolytic enzymes on must to achieve protein stability in wine

There are currently enzyme preparations on the market with specific protease activities capable of degrading unstable must proteins and preventing turbidity in white and rosé wines. The main drawback is the need to heat the must at 75ºc for 1-2 minutes to denature the proteins and facilitate enzyme action.

VINIoT – Precision viticulture service

The project VINIoT pursues the creation of a new technological vineyard monitoring service, which will allow companies in the wine sector in the SUDOE space to monitor plantations in real time and remotely at various levels of precision. The system is based on spectral images and an IoT architecture that allows assessing parameters of interest viticulture and the collection of data at a precise scale (level of grape, plant, plot or vineyard) will be designed. In France, three subjects were specifically developed: evaluation of maturity, of water stress, and detection of flavescence dorée. For the evaluation of maturity, it has been decided first to work at the berry scale in the laboratory, then at the bunch scale and finally in the vineyard. The acquisition of the spectral hyperstal image as well as the reference analyzes to measure the maturity, were carried out in the laboratory after harvesting the berries in a maturity monitoring context. This work focuses on a case study to predict sugar content of three different grape varieties: Syrah, Fer Servadou and Mauzac. A robust method called Roboost-PLSR, developed in the framework of this work (Courand et al., 2022), to improve prediction model performance was applied on spectra after the acquirement of hyperspectral images. Regarding the evaluation of water stress, to work with a significant variability in terms of water status, it has been worked first with potted plants under 2 different water regimes. The facilities have allowed the supervision of irrigation and micro-climatic conditions. The regression models on agronomic variables (stomatal conductance, water potential, …) are studied. To detect flavescence dorée, the experimental plan has consisted of work at leaf scale in the laboratory first, and then in the field. To detect the disease from hyper-spectral imaging, a combination of multivariate curve resolution-alternating least squares (MCR-ALS) and factorial discriminant analysis (FDA) was proposed. This strategy proved the potential towards the discrimination of healthy and infected leaves by flavescence dorée based on the use of hyperspectral images (Mas Garcia et al., 2021).