IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

Abstract

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011). This yeast is able to produce volatil phenols and is responsible of organoleptic deviations compromising quality and typicality of red wines [1]. Despite the fact that fungal chitosan is highly renewable, no toxic and non-allergenic, its use remains marginal because this treatment is relatively recent (compare to sulphites treatment) and information are contradictory between different studies described in literature. For all these reasons,
actors of wine industry are cautious to exploit this biopolymer. CHITOWINE project is born in this background to better understand the chitosan’s mechanism of action on Brettanomyces bruxellensis to improve the effectiveness of this treatment in wine, and to disseminate recommendations among wine makers. Tests of sensitivity of two batches of fungal chitosan with different molecular weight (Mw) and acetylation degrees (DA) (F1, Mw = 30000 Da, DA = 10%; F4, Mw = 400000 Da, DA = 16%) have been done on 53 strains of B. bruxellensis in wine media. Three profiles were distinguished: strains having increased sensitivity (41%), others showed an intermediate profile, and few strains were categorized as resistant to chitosan (13%). At the end of those tests, F1 chitosan showed effectiveness clearly higher than F4 chitosan [2]. To identify the parameters which enhance or decrease the effectiveness of fungal chitosan, chemicals hydrolysis to modulate the molecular weight and chemical acetylation to modulate acetylation degrees were applied on F1 and F4 chitosan batches. Chemicals hydrolyses permitted the achieving of fractions having a molecular weight from 3000 to 100 000 Da. After a chemical acetylation, fractions fully acetylated were generated. Sensitivity to those chitosan derivatives fractions was thereafter evaluated on B. bruxellensis in wine media to establish a link between the structure and the function of chitosan and then, better understand the mechanism of action of this renewable biopolymer.

References

Chatonnet, P., Dubourdieu, D., Boidron, J., and Pons, M. (1992). The origin of ethylphenols in wines. J. Sci. Food Agric. 60, 165–178. doi: 10.1002/jsfa. 2740600205
Paulin, M., Miot-Sertier, C., Dutilh, L., Brasselet, C., Delattre, C., Pierre, G., Dubessay, P., Michaud, P., et al. (2020). +Brettanomyces bruxellensis Displays Variable Susceptibility to Chitosan Treatment in Wine. Front. Microbiol. 11, 571067. doi:10.3389/fmicb.2020.571067.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Paulin Margot1, Delattre Cédric1, Brasselet Clément1, Pierre Guillaume1, Dubessay Pascal1, Michaud Philippe1, Gardarin Christine1, Miot-Sertier Cécile2, Albertin Warren2, Ballestra Patricia2, Masneuf-Pomerede Isabelle2, Dutilh Lucie3, Maupeu Julie3, Vallet-Courbin Amélie3, Doco Thierry4, Moine Virginie5, Coulon Joana5 and Dols Marguerite2

1Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont Ferrand, France, Institut Universitaire de France, Paris, France
2EA 4577 Œnologie, INRA, USC 1366, ISVV, Bordeaux INP, Université de Bordeaux, Bordeaux, France
3Microflora – ADERA, EA 4577 Œnologie, ISVV, Bordeaux, France
4INRA, SupAgro, UM1, UMR 1083, UMR Sciences pour l’Œnologie, Montpellier, France
5Biolaffort, Floirac, France

Contact the author

Keywords

fungal chitosan, wine, Brettanomyces bruxellensis, mechanism of action

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Red Grenache variety in Rhône Valley : impact of “terroir” and vintages on the aromatic potential of the grapes

The Grenache Noir grape variety, due to its originality and its representativeness, contributes very directly to the quality and typicality of the wines of the Rhône Valley. It is generally appreciated for its varied aromatic palette and for the roundness and suppleness it gives to wines. Since 1995, the Rhodanien Institute has set up a network of reference plots representative of the different types of terroir present in the southern zone of the Côtes du Rhône Appellation (TRUC, 1997; VAUDOUR et al, 1996 ) . Publications on the aromatic composition of grapes and wines are very abundant, but only a few articles have appeared on the Grenache grape variety PAUMES et al., 1986).

Management of water status in vineyards: meta-analysis of its effects on yield and grape composition

Mediterranean vineyards have been traditionally grown under rainfed conditions, but in recent decades the irrigated area has increased significantly, seeking to minimize the adverse effects of severe water stress on grape quality and yield. Given the large area occupied by vineyards, and the increasing scarcity of water resources, it is necessary to develop strategies for the optimization and efficient use of water to reduce the risk of its overexploitation. The present study aims at valorizing previous knowledge generated in different research projects by means of a meta-analysis of the effects of water status management on vineyard performance.

Long-term flooding effects on the physiological and productive performance of Montepulciano and Sangiovese cultivars

Extreme climatic events, such as prolonged drought followed by intense flooding, increasingly impact viticulture, affecting vine physiology, productivity, and grape composition.

Characterization of the mechanisms underlying the tolerance of genotypes of Uva Cão to climate change: A transcriptomic and genomic study

Climate change has been influencing viticulture and changing wine profiles in the past years, and effects are expected to get worse.

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).