IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

Abstract

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011). This yeast is able to produce volatil phenols and is responsible of organoleptic deviations compromising quality and typicality of red wines [1]. Despite the fact that fungal chitosan is highly renewable, no toxic and non-allergenic, its use remains marginal because this treatment is relatively recent (compare to sulphites treatment) and information are contradictory between different studies described in literature. For all these reasons,
actors of wine industry are cautious to exploit this biopolymer. CHITOWINE project is born in this background to better understand the chitosan’s mechanism of action on Brettanomyces bruxellensis to improve the effectiveness of this treatment in wine, and to disseminate recommendations among wine makers. Tests of sensitivity of two batches of fungal chitosan with different molecular weight (Mw) and acetylation degrees (DA) (F1, Mw = 30000 Da, DA = 10%; F4, Mw = 400000 Da, DA = 16%) have been done on 53 strains of B. bruxellensis in wine media. Three profiles were distinguished: strains having increased sensitivity (41%), others showed an intermediate profile, and few strains were categorized as resistant to chitosan (13%). At the end of those tests, F1 chitosan showed effectiveness clearly higher than F4 chitosan [2]. To identify the parameters which enhance or decrease the effectiveness of fungal chitosan, chemicals hydrolysis to modulate the molecular weight and chemical acetylation to modulate acetylation degrees were applied on F1 and F4 chitosan batches. Chemicals hydrolyses permitted the achieving of fractions having a molecular weight from 3000 to 100 000 Da. After a chemical acetylation, fractions fully acetylated were generated. Sensitivity to those chitosan derivatives fractions was thereafter evaluated on B. bruxellensis in wine media to establish a link between the structure and the function of chitosan and then, better understand the mechanism of action of this renewable biopolymer.

References

Chatonnet, P., Dubourdieu, D., Boidron, J., and Pons, M. (1992). The origin of ethylphenols in wines. J. Sci. Food Agric. 60, 165–178. doi: 10.1002/jsfa. 2740600205
Paulin, M., Miot-Sertier, C., Dutilh, L., Brasselet, C., Delattre, C., Pierre, G., Dubessay, P., Michaud, P., et al. (2020). +Brettanomyces bruxellensis Displays Variable Susceptibility to Chitosan Treatment in Wine. Front. Microbiol. 11, 571067. doi:10.3389/fmicb.2020.571067.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Paulin Margot1, Delattre Cédric1, Brasselet Clément1, Pierre Guillaume1, Dubessay Pascal1, Michaud Philippe1, Gardarin Christine1, Miot-Sertier Cécile2, Albertin Warren2, Ballestra Patricia2, Masneuf-Pomerede Isabelle2, Dutilh Lucie3, Maupeu Julie3, Vallet-Courbin Amélie3, Doco Thierry4, Moine Virginie5, Coulon Joana5 and Dols Marguerite2

1Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont Ferrand, France, Institut Universitaire de France, Paris, France
2EA 4577 Œnologie, INRA, USC 1366, ISVV, Bordeaux INP, Université de Bordeaux, Bordeaux, France
3Microflora – ADERA, EA 4577 Œnologie, ISVV, Bordeaux, France
4INRA, SupAgro, UM1, UMR 1083, UMR Sciences pour l’Œnologie, Montpellier, France
5Biolaffort, Floirac, France

Contact the author

Keywords

fungal chitosan, wine, Brettanomyces bruxellensis, mechanism of action

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

New pathogen resistant varieties allow an efficient and greatly reduced use of fungicides. These new varieties promise, therefore, an enormous potential to reach the European Green Deal aim of a 50% reduction of pesticides in EU agriculture by 2030.

Meso-scale geostatistical analysis: a method for improving experimental design

The growing region of Barolo DOCG certified wines is topographically complex. The region is famous for this complexity and for the associated terroir driven Nebbiolo grapes and wines derived distinctly from this varietal. Although it is recognized that the Barolo area is unusual topographically and it is assumed that this unusual topography lends to the inherit terroir, the specifics of this relationship are less well defined.

Kinetic investigations of the sulfite addition on flavanols

Sulfonated monomeric and dimeric flavan-3-ols are recently discovered in wine and proved to have great importance in understanding wine chemistry and quality [1, 2].

Subsurface irrigation: a means to reduce chemical and water inputs in vineyards

Grape growers around the world are seeking to reduce their reliance on herbicides. However, traditional alternatives to chemical weed control do not always integrate seamlessly into established vineyard operations. Employing nonchemical weed management often requires trellis alterations, purchasing or hiring new equipment, and depending on region, may significantly increase tractor passes required to reach desired level of weed control. Critical thinking and thoughtful strategies are necessary to minimize expenditures and maintain quality during the transition away from herbicides. In this trial, irrigation was installed underground in an effort to minimize water loss due to evaporation, better direct the water to the vines, and reduce weed growth in the difficult to control undervine area.

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.