IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

Abstract

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011). This yeast is able to produce volatil phenols and is responsible of organoleptic deviations compromising quality and typicality of red wines [1]. Despite the fact that fungal chitosan is highly renewable, no toxic and non-allergenic, its use remains marginal because this treatment is relatively recent (compare to sulphites treatment) and information are contradictory between different studies described in literature. For all these reasons,
actors of wine industry are cautious to exploit this biopolymer. CHITOWINE project is born in this background to better understand the chitosan’s mechanism of action on Brettanomyces bruxellensis to improve the effectiveness of this treatment in wine, and to disseminate recommendations among wine makers. Tests of sensitivity of two batches of fungal chitosan with different molecular weight (Mw) and acetylation degrees (DA) (F1, Mw = 30000 Da, DA = 10%; F4, Mw = 400000 Da, DA = 16%) have been done on 53 strains of B. bruxellensis in wine media. Three profiles were distinguished: strains having increased sensitivity (41%), others showed an intermediate profile, and few strains were categorized as resistant to chitosan (13%). At the end of those tests, F1 chitosan showed effectiveness clearly higher than F4 chitosan [2]. To identify the parameters which enhance or decrease the effectiveness of fungal chitosan, chemicals hydrolysis to modulate the molecular weight and chemical acetylation to modulate acetylation degrees were applied on F1 and F4 chitosan batches. Chemicals hydrolyses permitted the achieving of fractions having a molecular weight from 3000 to 100 000 Da. After a chemical acetylation, fractions fully acetylated were generated. Sensitivity to those chitosan derivatives fractions was thereafter evaluated on B. bruxellensis in wine media to establish a link between the structure and the function of chitosan and then, better understand the mechanism of action of this renewable biopolymer.

References

Chatonnet, P., Dubourdieu, D., Boidron, J., and Pons, M. (1992). The origin of ethylphenols in wines. J. Sci. Food Agric. 60, 165–178. doi: 10.1002/jsfa. 2740600205
Paulin, M., Miot-Sertier, C., Dutilh, L., Brasselet, C., Delattre, C., Pierre, G., Dubessay, P., Michaud, P., et al. (2020). +Brettanomyces bruxellensis Displays Variable Susceptibility to Chitosan Treatment in Wine. Front. Microbiol. 11, 571067. doi:10.3389/fmicb.2020.571067.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Paulin Margot1, Delattre Cédric1, Brasselet Clément1, Pierre Guillaume1, Dubessay Pascal1, Michaud Philippe1, Gardarin Christine1, Miot-Sertier Cécile2, Albertin Warren2, Ballestra Patricia2, Masneuf-Pomerede Isabelle2, Dutilh Lucie3, Maupeu Julie3, Vallet-Courbin Amélie3, Doco Thierry4, Moine Virginie5, Coulon Joana5 and Dols Marguerite2

1Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont Ferrand, France, Institut Universitaire de France, Paris, France
2EA 4577 Œnologie, INRA, USC 1366, ISVV, Bordeaux INP, Université de Bordeaux, Bordeaux, France
3Microflora – ADERA, EA 4577 Œnologie, ISVV, Bordeaux, France
4INRA, SupAgro, UM1, UMR 1083, UMR Sciences pour l’Œnologie, Montpellier, France
5Biolaffort, Floirac, France

Contact the author

Keywords

fungal chitosan, wine, Brettanomyces bruxellensis, mechanism of action

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Comportamiento de la variedade “Touriga Nacional” en la Región Demarcada del Douro, en diferentes condiciones climáticas y edáficas

A Região Demarcada do Douro, oferece uma diversidade geográfica, climática e biológica (grande número de castas em cultivo) extremamente grande e complexa, originando vinhas

Untargeted metabolomics analyses to study taste-active compounds released during post-fermentation maceration of wine

The sensory properties of a wine depends on its colours, aromas and flavors. Regarding red wines, the gustatory part consists of the acid, bitter and sweet tastes

Haplotype-Resolved genome assembly of the Microvine

Developing a tractable genetic engineering and gene editing system is an essential tool for grapevine. We initiated a plant transformation and biotechnology program at Oregon State University using the grape microvine system (V. vinifera) in 2018 to interrogate gene-to-trait relationships using traditional genetic engineering and gene editing. The microvine model is also used for nanomaterial-assisted RNP, DNA, and RNA delivery. Most reference genomes and annotations for grapevine are collapsed assemblies of homologous chromosomes and do not represent the specific microvine cultivar ‘043023V004’ under study at our institution.

Manipulating grapevine bud fruitfulness

Bud fruitfulness is a key component of reproductive performance of grapevine. It plays a significant role in annual yield variation of vineyards as it is a prerequisite of crop production in the following season. Various exogenous and endogenous factors influencing the development of inflorescence primordia (IP) have been studied. However, the research on molecular genetic control of bud fruitfulness, especially how it interacts with environmental factors is still lacking. This study aims to investigate the molecular mechanism of effects of temperature and light on grapevine bud fruitfulness during initiation and differentiation of IP.

Kinetic investigations of the sulfite addition on flavanols

Sulfonated monomeric and dimeric flavan-3-ols are recently discovered in wine and proved to have great importance in understanding wine chemistry and quality [1, 2].