IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Wine ageing: Managing wood contact time.

Wine ageing: Managing wood contact time.

Abstract

Barrel ageing is a transformative process that alters a wine’s organoleptic properties and consequently its price. Even though it is considered beneficial mostly for red wines, ageing can also be used for white wines but for shorter time periods. Due to barrel costs, space requirements and the markets’ demands for fast release of each new vintage, new products such as oak chips or shavings have been developed to help minimize the time needed for the extraction of essential wood compounds. Regardless of the shape or type of the wood used for ageing, managing time of contact is a challenging task, based mostly on wine tastings by professionals, as chemical analyses related to ageing are laborious, costly, require highly educated personnel and cannot be performed in the winery. For this reason, the development of a tool for the management of the optimum time of contact is of grave interest for winemakers and enologists. In this experiment, extraction from chips with various toasting degrees was monitored with the use of Fourier Transform Infrared Spectroscopy (FT-IR) for a period of eight weeks. FT-IR was selected due to its cost-effective nature and speed, and its successful application in wine authentication. The wine used, was a monovarietal white wine from the Greek market, while the chips were from Tonnellerie Nadalié and included untoasted, Noisette, medium and heavy toasting degrees. The chips were added to 200 ml of wine (2 repetitions per sample) at a ratio of 3 g/L and samples were filtered and measured every two weeks. Measurements were performed in triplicate on a IROS 05 spectrometer from Ostec Instruments in ATR mode at the spectral range from 4000 to 400 cm-1. JMP v.16 software (SAS Institute Inc, 2022) was used for statistical analysis.The spectral profile obtained for each sample revealed clear differences in the range from 2000 to 900cm-1. Less peaks were observed in samples from wines with untoasted chips, while the highest peaks were observed in samples from chips with Noisette toasting. Moreover, based on the range from 2000 to 900cm-1Principal Component Analysis produced a clear differentiation in wines from the second sampling (4 weeks’ time of contact), when according to most manufacturers’ guidelines the highest extraction of wood compounds is observed. The first two Principal Components explain 87,8% of the variance. A sub-grouping based on the type of toasting was also evident, however only in the group of the second sampling. Performing PCA on each sampling revealed clear groupings based on toasting as well, with the first two PCs explaining close to 90% for all four analyses. These preliminary results show good potential for the development of a tool based on which samples that have reached maximum extraction can be differentiated.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Basalekou Marianthi1, Iliadou Georgia2, Ntini-Levanti Maria1, Kallithraka Stamatina2, Chira Kleopatra3, Pappas Christos2 and Tarantilis Petros A.2

1Department of Wine, Vine and Beverage Sciences, University of West Attica
2Laboratory of Enology, Department of Food Science & Human Nutrition, Agricultural University of Athens
3Univ. Bordeaux, ISVV, EA 4577, Œnologie

Contact the author

Keywords

extraction, chemometrics, ftir, ageing, oak

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Ceramic imprint in wine: influence of hydraulic ratio on ceramic dissolution and wine pH in amphorae systems

This interaction is primarily due to an acidic attack on the ceramic by the wine. It results in (1) the dissolution of the ceramic into the wine and the release of a wide variety of elements; and (2) an increase of the wine pH. The extent of these effects depends on the mineralogical and chemical composition of the ceramic, as well as the hydraulic ratio of the ceramic-wine system (the term hydraulic ratio (ρ) defines here the volume of wine over the surface area of the ceramic in contact with the wine).

«Observatoire Mourvèdre»: statistical modelling of quality for Cv. Mourvèdre

Vine cultivar Mourvèdre is present all around the Mediterranean area and is interesting for its tannins and the specificity of its aromas.

Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

More frequent and extreme temperatures and droughts pose challenges to the wine sector in Mediterranean Europe. Soil is crucial to sustain the equilibrium of ecosystems, economic growth and people’s prosperity worldwide. In viticulture, soils are a major component of the terroir and do influence vine’s growth, yield and berry composition. Soil temperature (ST) affects soil´s physical, chemical and biological processes and also crop growth. The impact of ST becomes even stronger when dealing with row crops such as grapevine, when considering the increased exposition to radiation. However, the impact of ST on crop performance remains poorly described, especially for extreme climatic conditions.

Great highlands wine growing terroir: conditions and expressions

During 1982 started our wine growing project at the Puntalarga Hill, between 2500 and 2600 meters a.s.l.: 5.78 ºN, 72.98 ºW. Pinot noir, white Riesling and Riesling x Silvaner crossings are the most planted grapevines. Since 1984 research and development activities are carried out on pertinent subjects.

Effect of regulated deficit irrigation regime on amino acids content of Monastrell (Vitis vinifera L.) grapes

Irrigation is an important practice to influence vine quality, especially in Mediterranean regions, characterized by hot summers and severe droughts during the growing season. This study focused on deficit irrigation regime influence on amino acids composition of Monastrell grapevines under semiarid conditions (Albacete, Southeastern of Spain). In 2019, two treatments were applied: non-irrigation (NI) and regulated deficit irrigation (RDI), watered at 30% of the estimated crop evapotranspiration from fruit set to onset of veraison. Grape amino acids content was analyzed by HPLC. Berries from non-irrigated vines showed higher concentration of several amino acids, such as tryptophan (73%), arginine (70%), lysine (36%), isoleucine (27%), and leucine (21%), compared to RDI grapes. Arginine is, together with ammonium ion, the principal nitrogen source for yeasts during the alcoholic fermentation; while isoleucine, tryptophan, and leucine are precursors of fermentative volatile compounds, key compounds for wine quality. Moreover, NI treatment increased in a 14% the total amino acids content in grapes compared to RDI treatment. The reported effects might be because yield was 70% higher in RDI vines than in the NI ones and, therefore, the sink demand was increased in the irrigated vines. In addition, NI vines suffered more severe water stress and it is known that the amino acids synthesis and accumulation can be influenced by the plant response to stress. According to the results, the irrigation regime showed effect on amino acids concentration in Monastrell grapes under semiarid conditions. Grapes from non-irrigated vines showed a higher content of several amino acids relevant to the fermentative process and to the wine aroma compounds formation. It is demonstrated that the final content of nitrogen-related components in grapes is influenced by the irrigation regime. The convenience of the irrigation strategy to suggest will depend on the desired wine style and the target yield levels.