IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Untargeted LC-HRMS analysis to discover new taste-active compounds in spirits.

Untargeted LC-HRMS analysis to discover new taste-active compounds in spirits.

Abstract

​For several years, the chemistry of taste has aroused high interest both from academics and industrials. Plant kingdom is a rich and reliable source of new taste-active compounds. Many sweet, bitter or sour molecules have been identified in various plants [1]. They belong to diverse chemical families and their sensory properties are strongly affected by slight structural modifications. As a consequence, the investigation of natural taste-active products in a given matrix appears as a major challenge for chemists. Such studies are particularly relevant in oenology since they allow a better understanding of wine and spirit taste.

The present study aims at proposing an original methodology for the discovery of new taste-active compounds. In this context, an untargeted metabolomic approach using liquid chromatography–high resolution mass spectrometry (LC-HRMS, Orbitrap analyzer) was implemented on several “eau-de-vie” of Cognac. Different statistical analyzes allowed to assess the overall structure of the data, which represents hundreds of ions, and to select and identify compounds of interest. On this basis, compound A and B were chosen according to several criteria. A fractionation protocol from “eau-de-vie” of Cognac and oak wood extracts, including liquid-liquid extractions, centrifugal partition chromatography (CPC) and Preparative-HPLC, was set up to isolate and characterize these targeted compounds. Their structures were elucidated by HRMS and nuclear magnetic resonance (NMR). Additionally, compound A was perceived as sweet and compound B exhibited a taste of fat in two matrices [2-3].These results highlight the interest of an untargeted differential analysis, hyphenating separative techniques and sensory analysis, to discover new taste-active compounds. These studies provide promising perspectives for a better understanding of the molecular markers responsible for the taste of foods and beverages.

References

[1] Kinghorn, A. D. Biologically Active Compounds from Plants with Reputed Medicinal and Sweetening Properties. Journal of Natural Products 1987, 50 (6), 1009–1024.
[2] Winstel, D.; Bahammou, D.; Albertin, W.; Waffo-Téguo, P.; Marchal, A. Untargeted LC–HRMS Profiling Followed by Targeted Fractionation to Discover New Taste-Active Compounds in Spirits. Food Chemistry 2021, 359, 129825.
[3] Winstel, D.; Capello, Y.; Quideau, S.; Marchal, A. Isolation of a New Taste-Active Brandy Tannin A: Structural Elucidation, Quantitation and Sensory Assessment. Food Chemistry 2022, 377, 131963.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Winstel Delphine1, Bahammou Delphine1, Capello Yoan2, Albertin Warren1, Waffo-Teguo Pierre1, Quideau Stephane1 and Marchal Axel1

1UMR ŒNOLOGIE (OENO), UMR 1366, ISVV, University of Bordeaux
2Univ. Bordeaux, ISM (CNRS-UMR 5255)

Contact the author

Keywords

Untargeted approach, Taste-active compounds, Sweetness, Quantitation, ellagitannin

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Analytical and Chemometric Investigation of Phenolic Content of South African Red Wines

Phenolic compounds have been the focus of a lot of research in recent years for their important contribution to sensory characteristics of wine, their beneficial health effects, as well as the possibility they offer of characterising wines. In this contribution, a method is developed that allows the direct injection of wine samples followed by liquid

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Climats: a model of terroir-based winegrowing recognized by UNESCO

In Burgundy, a climat has nothing to do with the weather but accurately designates a named vine plot, often centuries-old, which produces a singular wine. This wine is the combination of history, the natural environment (relief, type of soil, exposure to the sun), a grape variety and know-how going back thousands of years. The grapes of each climat are harvested separately and the wine is made from a single grape variety and has a unique name featured on the bottle. Romanée conti, clos de vougeot, montrachet, musigny, corton…

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

Spatial variability of grape berry maturation program at the molecular level 

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening.