IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Untargeted LC-HRMS analysis to discover new taste-active compounds in spirits.

Untargeted LC-HRMS analysis to discover new taste-active compounds in spirits.

Abstract

​For several years, the chemistry of taste has aroused high interest both from academics and industrials. Plant kingdom is a rich and reliable source of new taste-active compounds. Many sweet, bitter or sour molecules have been identified in various plants [1]. They belong to diverse chemical families and their sensory properties are strongly affected by slight structural modifications. As a consequence, the investigation of natural taste-active products in a given matrix appears as a major challenge for chemists. Such studies are particularly relevant in oenology since they allow a better understanding of wine and spirit taste.

The present study aims at proposing an original methodology for the discovery of new taste-active compounds. In this context, an untargeted metabolomic approach using liquid chromatography–high resolution mass spectrometry (LC-HRMS, Orbitrap analyzer) was implemented on several “eau-de-vie” of Cognac. Different statistical analyzes allowed to assess the overall structure of the data, which represents hundreds of ions, and to select and identify compounds of interest. On this basis, compound A and B were chosen according to several criteria. A fractionation protocol from “eau-de-vie” of Cognac and oak wood extracts, including liquid-liquid extractions, centrifugal partition chromatography (CPC) and Preparative-HPLC, was set up to isolate and characterize these targeted compounds. Their structures were elucidated by HRMS and nuclear magnetic resonance (NMR). Additionally, compound A was perceived as sweet and compound B exhibited a taste of fat in two matrices [2-3].These results highlight the interest of an untargeted differential analysis, hyphenating separative techniques and sensory analysis, to discover new taste-active compounds. These studies provide promising perspectives for a better understanding of the molecular markers responsible for the taste of foods and beverages.

References

[1] Kinghorn, A. D. Biologically Active Compounds from Plants with Reputed Medicinal and Sweetening Properties. Journal of Natural Products 1987, 50 (6), 1009–1024.
[2] Winstel, D.; Bahammou, D.; Albertin, W.; Waffo-Téguo, P.; Marchal, A. Untargeted LC–HRMS Profiling Followed by Targeted Fractionation to Discover New Taste-Active Compounds in Spirits. Food Chemistry 2021, 359, 129825.
[3] Winstel, D.; Capello, Y.; Quideau, S.; Marchal, A. Isolation of a New Taste-Active Brandy Tannin A: Structural Elucidation, Quantitation and Sensory Assessment. Food Chemistry 2022, 377, 131963.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Winstel Delphine1, Bahammou Delphine1, Capello Yoan2, Albertin Warren1, Waffo-Teguo Pierre1, Quideau Stephane1 and Marchal Axel1

1UMR ŒNOLOGIE (OENO), UMR 1366, ISVV, University of Bordeaux
2Univ. Bordeaux, ISM (CNRS-UMR 5255)

Contact the author

Keywords

Untargeted approach, Taste-active compounds, Sweetness, Quantitation, ellagitannin

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Flavor Enhancement Of Neutral White Wines By Mango Peel Products

Varietal flavor is commonly known as the aromatic character of a wine in which the aroma of a particular grape variety predominates. However, not all varieties present particularly pronounced aromas. Therefore, different methods are constantly sought to enhance the aroma of wines with neutral aromatic characteristics, such as the use of glycosidases (1), certain yeast strains (2) or maceration with different agricultural products. In this work, aiming to improve the sensory profile together with the diversification of this product, white wines, derived from a neutral grape variety, were elaborated with the addition of mango peel by-products.

Vine plant material: situation and prospect

vine plant material is one of the major factors of terroir. The vine numbers over 1,000 species, of which the main cultivated species, Vitis vinifera, includes some 6,000 varieties. For the last forty years, selection has been carried out on these, mainly through clonal selection. However, today, only 300 varieties present one or more clones. A dozen varieties are considered as international. The extreme requirements of selection, in terms of diseases, provoke the elimination of the majority of selected plants. This approach to selection is not thorough because it focuses mainly on elimination of virosis and phytoplasma diseases.

Determinazione della frazione aromatica dei vini, quale strumento per-la valorizzazione del territorio viticolo

La caratterizzazione della frazione volatile aromatica dei vini attraverso l’analisi quali­quantitativa dei diversi composti, ha portato corne primo risultato la netta differenziazione delle annate in prova.

Stem growth disorder and xylem anatomy modifications during esca pathogenesis in grapevines

Esca is a grapevine vascular disease with detrimental consequences on vineyard yield and longevity. Recently, esca leaf symptom development has been shown to result in the occlusion of xylem vessels by tyloses in leaves and stems, leading to hydraulic failure. However, little is known regarding the response of xylem anatomy and stem growth to esca in different varieties . Here we studied the impact of esca leaf symptom development on grapevine physiology, stem growth, and xylem anatomy in two widespread cultivars, Cabernet sauvignon and Sauvignon blanc.

From bush to glass: unlocking the potential of indigenous microbes in Australian wines

Global trends in the wine industry are changing, which is caused by consumer demands for aroma and flavour innovation. Producers in Australia, the sixth globally ranked wine producing country, are embracing this trend by exploring non-conventional yeast species to improve sensory qualities and achieve fermentation advantages.