IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Untargeted LC-HRMS analysis to discover new taste-active compounds in spirits.

Untargeted LC-HRMS analysis to discover new taste-active compounds in spirits.

Abstract

​For several years, the chemistry of taste has aroused high interest both from academics and industrials. Plant kingdom is a rich and reliable source of new taste-active compounds. Many sweet, bitter or sour molecules have been identified in various plants [1]. They belong to diverse chemical families and their sensory properties are strongly affected by slight structural modifications. As a consequence, the investigation of natural taste-active products in a given matrix appears as a major challenge for chemists. Such studies are particularly relevant in oenology since they allow a better understanding of wine and spirit taste.

The present study aims at proposing an original methodology for the discovery of new taste-active compounds. In this context, an untargeted metabolomic approach using liquid chromatography–high resolution mass spectrometry (LC-HRMS, Orbitrap analyzer) was implemented on several “eau-de-vie” of Cognac. Different statistical analyzes allowed to assess the overall structure of the data, which represents hundreds of ions, and to select and identify compounds of interest. On this basis, compound A and B were chosen according to several criteria. A fractionation protocol from “eau-de-vie” of Cognac and oak wood extracts, including liquid-liquid extractions, centrifugal partition chromatography (CPC) and Preparative-HPLC, was set up to isolate and characterize these targeted compounds. Their structures were elucidated by HRMS and nuclear magnetic resonance (NMR). Additionally, compound A was perceived as sweet and compound B exhibited a taste of fat in two matrices [2-3].These results highlight the interest of an untargeted differential analysis, hyphenating separative techniques and sensory analysis, to discover new taste-active compounds. These studies provide promising perspectives for a better understanding of the molecular markers responsible for the taste of foods and beverages.

References

[1] Kinghorn, A. D. Biologically Active Compounds from Plants with Reputed Medicinal and Sweetening Properties. Journal of Natural Products 1987, 50 (6), 1009–1024.
[2] Winstel, D.; Bahammou, D.; Albertin, W.; Waffo-Téguo, P.; Marchal, A. Untargeted LC–HRMS Profiling Followed by Targeted Fractionation to Discover New Taste-Active Compounds in Spirits. Food Chemistry 2021, 359, 129825.
[3] Winstel, D.; Capello, Y.; Quideau, S.; Marchal, A. Isolation of a New Taste-Active Brandy Tannin A: Structural Elucidation, Quantitation and Sensory Assessment. Food Chemistry 2022, 377, 131963.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Winstel Delphine1, Bahammou Delphine1, Capello Yoan2, Albertin Warren1, Waffo-Teguo Pierre1, Quideau Stephane1 and Marchal Axel1

1UMR ŒNOLOGIE (OENO), UMR 1366, ISVV, University of Bordeaux
2Univ. Bordeaux, ISM (CNRS-UMR 5255)

Contact the author

Keywords

Untargeted approach, Taste-active compounds, Sweetness, Quantitation, ellagitannin

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Somatic embryogenesis and organogenesis: driving regeneration forces behind grapevine genetic transformation

Cell pluripotency, enables the possibility to change the cellular fate, stimulating the reorganization and the formation of new vegetative structures from differentiated somatic tissues. Although several factors are implicated in determining the success of a breeding program through the use of modern biotechnological techniques, the definition of a specific regeneration strategy is fundamental to speed up and make these applications feasible.

Mechanization of pre-flowering leaf removal under the temperate-climate conditions of Switzerland

Grapevine leaf removal (LR) in the cluster area is typically done between fruit set and cluster closure to create an unfavorable microclimate for fungal diseases, such as Botrytis cinerea and powdery mildew. Grape growers are now turning their attention to pre-flowering LR, which has additional benefits under certain conditions. When applied before flowering, LR strongly affects fruit set and thus the number of berries per cluster. It is therefore a good yield control tool, replacing time-consuming manual cluster thinning (Poni et al. 2006). It also improves berry structure, that is, skin thickness, skin-to-pulp ratio, and berry composition (total soluble solids, titratable acidity, and polyphenols) (Palliotti et al. 2012; Komm and Moyer 2015). By exacerbating competition for assimilates between reproductive and vegetative organs, pre-flowering LR also poses some risks. Excessive yield loss at the same year’s harvest due to a too low fruit set rate is the main concern: intensive pre-flowering LR (100% of the cluster area) can induce up to 50% yield loss in potted vines (Poni et al. 2005). Other parameters, such as cool climatic conditions during flowering, also affect fruit set rate and make it difficult to predict potential yield at harvest. Repeated and overly intensive preflowering LR can have repercussions over time and induce a decline in bud fruiting and plant vigor (Risco et al. 2014).

Origin of unpleasant smelling sulphur compounds during wine fermentation

The wine sector is undergoing considerable transformation, particularly as a result of climate change and increasing consumer expectations for quality products, in a globalised and increasingly competitive market.

Study of grape-ripening process variability using mid infrared spectroscopy

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist.

Phylloxera root infection drives vineyard water

Most of the rootstocks used in viticulture today are partly resistant against grape phylloxera (Daktulosphaira vitifoliae Fitch) and host phylloxera on the root system without conspicuous negative impacts on fruit production).