IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Mitigation of retronasal smoke flavor carryover in the sensory analysis of smoke affected wines

Mitigation of retronasal smoke flavor carryover in the sensory analysis of smoke affected wines

Abstract

With the steady rise in wildfire occurrence in wine regions around the world, there are quality issues beginning to face the wine industry. These fires produce clouds of smoke which have the ability to carry organic molecules across vast distances that can be absorbed by grapes. When these compounds make their way into the final wine, unpleasant smokey and burnt flavors are present, along with a lasting ashy finish. Along with the volatile compounds carried by smoke, once incorporated into the fruit these compounds become bound to sugars, forming glycosidic compounds. The bound volatiles can then become volatilized through many stages of the winemaking process, with a heavy sensory impact from the hypothesized release in the mouth by enzymatic actions. This can lead to lasting ashy and smokey flavor sensations that pose issues for sensory analysis. Specifically a carryover bias occurs, where residual sensations cause augmented intensity ratings when evaluating many samples in sequence. for accurate analysis of smoke tainted wines, this bias needs to be accounted for to correctly identify the extent to which a sample is smoke affected. Previous work has found that a 1 g/L pectin solution is effective in mitigating this bias, however, requires the lengthy separation of 120 seconds between samples. The objective of this work is to determine the efficacy and efficiency of other interstimulus rinses in reducing smoke related flavor sensations in the mouth. The progression of the intensity of both typical red wine attributes, mixed berry and floral, and smoke related attributes, smokey and ashy, were evaluated using a fixed-time point evaluation system on wines with differing smoke compound levels (low, moderate, high). For the rinse systems, ethanol, lipid, and dextrose solutions were evaluated along with the recommended pectin solution. Of these rinses, the 4 g/L dextrose solution was the most effective in clearing smoke flavor perception, requiring 90 seconds to return the mouth to baseline conditions. Additionally, this work identified retronasal flavor standards that are representative of the the flavors found in smoke-affected wine that can be used to better understand the in-mouth sensations. Overall, this study provided greater insights into the sensorial impact of wines produced from wildfire affected grapes and can be used to guide effective practices in future analysis of these wines.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Tomasino Elizabeth1, Fryer Jenna1 and Collins Thomas S.2

1Oregon State University
2Washington State University

Contact the author

Keywords

smoke taint, wine, sensory analysis, widlfires, carryover bias

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exploring grapevine water relations in the context of fruit growth at pre- and post-veraison

Climate change is increasing the frequency of water deficit in many grape-growing regions. Grapevine varieties differ in their stomatal behavior during water deficit, and their ability to regulate water potential under dry soil conditions is commonly differentiated using the concept of isohydricity. It remains unclear whether stomatal behavior, water potential regulation, and the resulting degree of isohydricity has a relationship with changes to fruit growth during water deficit. This study was conducted on four varieties (`Cabernet Franc`, `Semillon`, `Grenache`, and `Riesling`) subjected to both short-term, severe water deficit and long-term, moderate water deficit applied at both pre- and post-veraison.

Grapevine sugar concentration model in the Douro Superior, Portugal

Increasingly warm and dry climate conditions are challenging the viticulture and winemaking sector. Digital technologies and crop modelling bear the promise to provide practical answers to those challenges. As viticultural activities strongly depend on harvest date, its early prediction is particularly important, since the success of winemaking practices largely depends upon this key event, which should be based on an accurate and advanced plan of the annual cycle. Herein, we demonstrate the creation of modelling tools to assess grape ripeness, through sugar concentration monitoring. The study area, the Portuguese Côa valley wine region, represents an important terroir in the “Douro Superior” subregion. Two varieties (cv. Touriga Nacional and Touriga Franca) grown in five locations across the Côa Region were considered. Sugar accumulation in grapes, with concentrations between 170 and 230 g l-1, was used from 2014 to 2020 as an indicator of technological maturity conditioned by meteorological factors. The climatic time series were retrieved from the EU Copernicus Service, while sugar data were collected by a non-profit organization, ADVID, and by Sogrape, a leading wine company. The software for calibrating and validating this model framework was the Phenology Modeling Platform (PMP), version 5.5, using Sigmoid and growing degree-day (GDD) models for predictions. The performance was assessed through two metrics: Roots Mean Square Error (RMSE) and efficiency coefficient (EFF), while validation was undertaken using leave-one-out cross-validation. Our findings demonstrate that sugar content is mainly dependent on temperature and air humidity. The models achieved a performance of 0.65

The effect of soil and climate on the character of Sauvignon blanc wine

Un projet multidisciplinaire sur l’effet du sol et du climat sur la qualité du vin a débuté en Afrique du Sud il y a 5 ans. Des mesures sont effectuées sous culture sèche dans des vignes de Sauvignon Blanc dans six localités différentes, cinq dans le district de Stellenbosch et une à Durbanville.

Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Climate transition with frequent heat waves and long drought periods threatens grapevine productivity and wine quality in the Mediterranean regions. Microorganisms are known to contribute to plant fitness and to stimulate plant resilience against biotic and abiotic factors.
In this work, it was assessed the impact of long-term drought on soil microbiome associated to grapevine in open field in Alentejo, renowned Portuguese wine region.
Soil and plant tissues of drought tolerant Syrah cultivar exposed to three irrigation levels (100%- FI, 50%-DI ETc; rain-fed–NI) for 5 years were sampled for two years (2022-2023). Metabarcoding analysis of soil bacteria (16S V4 rRNA) and fungi (ITS sub-region) were integrated with soil physiochemical properties and leaves´ physiological data. Pre-dawn leaf water potential and stomatal conductance confirmed the imposed drought scenarios. Even though, α- and β-diversity of prokaryotic and eukaryotic microbial communities differed more by season than water availability, samples clustered according to soil water content and pH (p<0.05). Fungal communities show higher differences in the structure across treatments than bacteria. In 2023, 16 bacterial against 61 fungal ASVs were significatively different in abundance between NI and FI. Beijerinckiaceae, Bradyrhizobiaceae (Alphaproteobacteria) and Nocardioidaceae, Streptomycetaceae (Actinobacteria) families resulted to be significatively more abundant in NI, while Ascomycota, Basidyomicota and Mortierellomycota are the most important fungal phyla in NI. With culturomics data, this study aims to gather insights into how soil microbiome is remodelled under drought and contribute to select bacterial and fungal taxa with potential to mitigate drought stress in vineyards.

The influence of irrigation and crop load management on berry composition and yield in Chardonnay

Australian grape producers are facing a difficult wine market, therefore a reduction of vineyard production costs is critical.