IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Mitigation of retronasal smoke flavor carryover in the sensory analysis of smoke affected wines

Mitigation of retronasal smoke flavor carryover in the sensory analysis of smoke affected wines

Abstract

With the steady rise in wildfire occurrence in wine regions around the world, there are quality issues beginning to face the wine industry. These fires produce clouds of smoke which have the ability to carry organic molecules across vast distances that can be absorbed by grapes. When these compounds make their way into the final wine, unpleasant smokey and burnt flavors are present, along with a lasting ashy finish. Along with the volatile compounds carried by smoke, once incorporated into the fruit these compounds become bound to sugars, forming glycosidic compounds. The bound volatiles can then become volatilized through many stages of the winemaking process, with a heavy sensory impact from the hypothesized release in the mouth by enzymatic actions. This can lead to lasting ashy and smokey flavor sensations that pose issues for sensory analysis. Specifically a carryover bias occurs, where residual sensations cause augmented intensity ratings when evaluating many samples in sequence. for accurate analysis of smoke tainted wines, this bias needs to be accounted for to correctly identify the extent to which a sample is smoke affected. Previous work has found that a 1 g/L pectin solution is effective in mitigating this bias, however, requires the lengthy separation of 120 seconds between samples. The objective of this work is to determine the efficacy and efficiency of other interstimulus rinses in reducing smoke related flavor sensations in the mouth. The progression of the intensity of both typical red wine attributes, mixed berry and floral, and smoke related attributes, smokey and ashy, were evaluated using a fixed-time point evaluation system on wines with differing smoke compound levels (low, moderate, high). For the rinse systems, ethanol, lipid, and dextrose solutions were evaluated along with the recommended pectin solution. Of these rinses, the 4 g/L dextrose solution was the most effective in clearing smoke flavor perception, requiring 90 seconds to return the mouth to baseline conditions. Additionally, this work identified retronasal flavor standards that are representative of the the flavors found in smoke-affected wine that can be used to better understand the in-mouth sensations. Overall, this study provided greater insights into the sensorial impact of wines produced from wildfire affected grapes and can be used to guide effective practices in future analysis of these wines.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Tomasino Elizabeth1, Fryer Jenna1 and Collins Thomas S.2

1Oregon State University
2Washington State University

Contact the author

Keywords

smoke taint, wine, sensory analysis, widlfires, carryover bias

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Obtaining new varieties derived from Monastrell for the preparation of low alcoholic wines

The main challenge faced by viticulture is to improve the quality of the wines, adapting them to the new consumer demands that demand wines with lower alcohol content and greater freshness. In the last 30 years, a clear modification has been observed in the composition of the grape due to climate change

‘Cabernet Sauvignon’ (Vitis vinifera L.) berry skin flavonol and anthocyanin composition is affected by trellis systems and applied water amounts

Trellis systems are selected in wine grape vineyards to mainly maximize vineyard yield and maintain berry quality. This study was conducted in 2020 and 2021 to evaluate six commonly utilized trellis systems including a vertical shoot positioning (VSP), two relaxed VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a guyot (GY), combined with three levels of irrigation regimes based on different crop evapotranspiration (ETc) replacements, including a 25% ETc, 50% ETc, and 100% ETc. The results indicated SH yielded the most fruits and accumulated the most total soluble solids (TSS) at harvest in 2020, however, it showed the lowest TSS in the second season. In 2020, SH and HQ showed higher concentrations in most of the anthocyanin derivatives compared to the VSPs. Similar comparisons were noticed in 2021 as well. SH and HQ also accumulated more flavonols in both years compared to other trellis systems. Overall, this study provides information on the efficacy of trellis systems on grapevine yield and berry flavonoid accumulation in a currently warming climate.

Climatic potential to produce grapes for wine-making in the tropical north region of Minas Gerais State, Brazil

The tropical north region of Minas Gerais State is one of the least developed of Brazil and viticulture could be an alternative to develop its agriculture zone. The objective of this work was to evaluate the wine grape production climatic potential of that region.

Unraveling vineyard site from vintage contributions: Elemental composition of site-specific Pinot noir wines across multiple vintages

Understanding vineyard site contribution to elemental composition of wines has, historically, been limited due to lack of continuity across multiple vintages, as well as lack of uniformity in scion clone and lack of controlled pilot-scale winemaking conditions.  We recently completed our fifth vintage, and have elemental composition characterizing wines from four vintages (2015–2018)

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.