IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Physico-chemical parameters as possible markers of sensory quality for ‘Barbera’ commercial red wines

Physico-chemical parameters as possible markers of sensory quality for ‘Barbera’ commercial red wines

Abstract

Wine quality is defined by sensory and physico-chemical characteristics. In particular, sensory features are very important since they strongly condition wine acceptability by consumers. However, the evaluation of sensory quality can be subjective, unless performed by a tasting panel of experienced tasters. Therefore, it is of great relevance to establish relationships between objective chemical parameters and sensory perceptions, even though the complexity of wine composition makes it difficult. In this sense, more reliable relationships can be found for a particular wine typology or variety. The present study aimed to predict the perceived sensory quality from the physico-chemical parameters of ‘Barbera d’Asti’ DOCG red wines (Italy).
A total of 111 commercial ‘Barbera’ wines from 2015 and 2016 vintages were evaluated by sensory analysis with a trained panel (n = 10). Quality and intensity of color, aroma, and mouthfeel, as well as global quality perception of wines were analyzed using unstructured scales (0-100 mm). After assessing the correlation among the different sensory perceptions analyzed, ‘Barbera’ wines were classified according to global perception values, and three groups were obtained by dividing the unstructured scale range into equal portions: G1 (30-45 mm), G2 (46-61 mm), and G3 (62-77 mm). Twenty-one physico-chemical variables, including standard chemical parameters, phenolic composition, and chromatic characteristics, were determined for the characterization of wines belonging to each sensory profile. Statistical analyses based on ANOVA, Tukey (HSD) test, Pearson correlation, and principal component analysis (PCA) were applied on physico-chemical and sensory data sets.Ten physico-chemical parameters (total anthocyanin index, monomeric anthocyanin content, total flavonoid index, color intensity, the three CIELab color coordinates, alcohol strength, malic acid content, and dry extract) were significantly different among the sensory groups established (G1, G2, and G3). When PCA was applied on these physico-chemical parameters and sensory traits, a good separation of the three sensory groups was observed. Chemical parameters often associated with red wine quality (such as ethanol, dry extract, anthocyanins, and color intensity) were well correlated with the best valued sensory group G3. This study contributes to better know which are the main chemical parameters that allow both to classify the wines according to the perceived sensory profile/quality and to predict some relevant wine sensory traits.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Giacosa Simone1, Río Segade Susana1, Vilanova Mar2, Paissoni Maria Alessandra1, Rolle Luca1 and Gerbi Vincenzo1

1Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino
2Instituto de Ciencias de la Vid y del Vino (ICVV) Consejo Superior de Investigaciones Científicas CSIC-Universidad de La Rioja-Gobierno de La Rioja

Contact the author

Keywords

sensory analysis, phenolic composition, differentiation, prediction, red wines

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Terroir and Typicity: proposed definitions for two essential concepts in the understanding of Geographical Indications and sustainable development

The content of this communication arises from the deliberations of a working group mandated within the framework of the INRA-INAO 2000-2003 research convention, which brought together INAO representatives and researchers who had worked on AOCs or PGIs, in disciplines from the sphere of the humanities (consumer science, marketing, rural development) and biotechnical sciences (agronomy, animal production science, technology, biochemistry).

Grapevine nitrogen retrieval by hyperspectral sensing at the leaf and canopy level

Grapevine nitrogen (N) monitoring is essential for efficient N management plans that optimize fruit yield and quality while reducing fertilizer costs and the risk of environmental contamination. Unlike traditional vegetative-tissue sampling methods, remote sensing technologies, including hyperspectral imaging, have the potential to allow monitoring of the N status of entire vineyards at a per-vine resolution. However, differential N partitioning, variable spectral properties, and complex canopy structures hinder the development of a robust N retrieval algorithm. The present study aimed to establish a solid understanding of vine spectroscopic response at leaf and canopy levels by evaluating the different nitrogen retrieval approaches, including the radiative transfer model.

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.

Effect of pre-fermentative cold soaking and use of different enzymes on the chemical and sensory properties of Catarratto wines

The wine industry widely recognizes that early-harvested grapes or those with uneven ripeness at harvest can produce wines with an “unripe fruit” mouthfeel [1,2]. Despite this, it is still unknown which compounds cause these sensory flaws or the most effective winemaking techniques to address them.

Il piano regolatore delle città’ del vino: aspetti urbanistici, economici e turistici

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...