IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Physico-chemical parameters as possible markers of sensory quality for ‘Barbera’ commercial red wines

Physico-chemical parameters as possible markers of sensory quality for ‘Barbera’ commercial red wines

Abstract

Wine quality is defined by sensory and physico-chemical characteristics. In particular, sensory features are very important since they strongly condition wine acceptability by consumers. However, the evaluation of sensory quality can be subjective, unless performed by a tasting panel of experienced tasters. Therefore, it is of great relevance to establish relationships between objective chemical parameters and sensory perceptions, even though the complexity of wine composition makes it difficult. In this sense, more reliable relationships can be found for a particular wine typology or variety. The present study aimed to predict the perceived sensory quality from the physico-chemical parameters of ‘Barbera d’Asti’ DOCG red wines (Italy).
A total of 111 commercial ‘Barbera’ wines from 2015 and 2016 vintages were evaluated by sensory analysis with a trained panel (n = 10). Quality and intensity of color, aroma, and mouthfeel, as well as global quality perception of wines were analyzed using unstructured scales (0-100 mm). After assessing the correlation among the different sensory perceptions analyzed, ‘Barbera’ wines were classified according to global perception values, and three groups were obtained by dividing the unstructured scale range into equal portions: G1 (30-45 mm), G2 (46-61 mm), and G3 (62-77 mm). Twenty-one physico-chemical variables, including standard chemical parameters, phenolic composition, and chromatic characteristics, were determined for the characterization of wines belonging to each sensory profile. Statistical analyses based on ANOVA, Tukey (HSD) test, Pearson correlation, and principal component analysis (PCA) were applied on physico-chemical and sensory data sets.Ten physico-chemical parameters (total anthocyanin index, monomeric anthocyanin content, total flavonoid index, color intensity, the three CIELab color coordinates, alcohol strength, malic acid content, and dry extract) were significantly different among the sensory groups established (G1, G2, and G3). When PCA was applied on these physico-chemical parameters and sensory traits, a good separation of the three sensory groups was observed. Chemical parameters often associated with red wine quality (such as ethanol, dry extract, anthocyanins, and color intensity) were well correlated with the best valued sensory group G3. This study contributes to better know which are the main chemical parameters that allow both to classify the wines according to the perceived sensory profile/quality and to predict some relevant wine sensory traits.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Giacosa Simone1, Río Segade Susana1, Vilanova Mar2, Paissoni Maria Alessandra1, Rolle Luca1 and Gerbi Vincenzo1

1Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino
2Instituto de Ciencias de la Vid y del Vino (ICVV) Consejo Superior de Investigaciones Científicas CSIC-Universidad de La Rioja-Gobierno de La Rioja

Contact the author

Keywords

sensory analysis, phenolic composition, differentiation, prediction, red wines

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.

The use of pulsed fluorescence detector to quantify free SO2 in wines via the headspace

Pulsed fluorescence SO2 analyzers are widely used for atmospheric monitoring. They are accurate, portable, sensitive and their price are reduced compared to advanced techniques like gas chromatography with sulfur chemiluminescence detection (GC-SCD).

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines.

Reducing chemical use in vineyards. Evidence from the analysis of a national demonstration Network

High quantities of chemicals are applied in the vineyard for pest and disease control. Transition towards low pesticide viticulture is a key issue to improve sustainability. Winegrowers have to gradually change their practices to engage in this transition. This work aims at analysing the pesticide use evolution during transition towards low pesticide vineyards and identify some management options mobilized by winegrowers. To understand the diversity of pathways taken towards agroecological transition, we characterized different types of pesticide use evolution.

Aromatic complexity in Verdicchio wines: a case study

In this video recording of the IVES science meeting 2021, Fulvio Mattivi (Fondazione Edmund Mach, Centro Ricerca ed Innovazione, San Michele all’Adige, Italy) speaks about the effects of water deficit on secondary metabolites in grapes and wines. This presentation is based on an original article accessible for free on OENO One.