IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Physico-chemical parameters as possible markers of sensory quality for ‘Barbera’ commercial red wines

Physico-chemical parameters as possible markers of sensory quality for ‘Barbera’ commercial red wines

Abstract

Wine quality is defined by sensory and physico-chemical characteristics. In particular, sensory features are very important since they strongly condition wine acceptability by consumers. However, the evaluation of sensory quality can be subjective, unless performed by a tasting panel of experienced tasters. Therefore, it is of great relevance to establish relationships between objective chemical parameters and sensory perceptions, even though the complexity of wine composition makes it difficult. In this sense, more reliable relationships can be found for a particular wine typology or variety. The present study aimed to predict the perceived sensory quality from the physico-chemical parameters of ‘Barbera d’Asti’ DOCG red wines (Italy).
A total of 111 commercial ‘Barbera’ wines from 2015 and 2016 vintages were evaluated by sensory analysis with a trained panel (n = 10). Quality and intensity of color, aroma, and mouthfeel, as well as global quality perception of wines were analyzed using unstructured scales (0-100 mm). After assessing the correlation among the different sensory perceptions analyzed, ‘Barbera’ wines were classified according to global perception values, and three groups were obtained by dividing the unstructured scale range into equal portions: G1 (30-45 mm), G2 (46-61 mm), and G3 (62-77 mm). Twenty-one physico-chemical variables, including standard chemical parameters, phenolic composition, and chromatic characteristics, were determined for the characterization of wines belonging to each sensory profile. Statistical analyses based on ANOVA, Tukey (HSD) test, Pearson correlation, and principal component analysis (PCA) were applied on physico-chemical and sensory data sets.Ten physico-chemical parameters (total anthocyanin index, monomeric anthocyanin content, total flavonoid index, color intensity, the three CIELab color coordinates, alcohol strength, malic acid content, and dry extract) were significantly different among the sensory groups established (G1, G2, and G3). When PCA was applied on these physico-chemical parameters and sensory traits, a good separation of the three sensory groups was observed. Chemical parameters often associated with red wine quality (such as ethanol, dry extract, anthocyanins, and color intensity) were well correlated with the best valued sensory group G3. This study contributes to better know which are the main chemical parameters that allow both to classify the wines according to the perceived sensory profile/quality and to predict some relevant wine sensory traits.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Giacosa Simone1, Río Segade Susana1, Vilanova Mar2, Paissoni Maria Alessandra1, Rolle Luca1 and Gerbi Vincenzo1

1Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino
2Instituto de Ciencias de la Vid y del Vino (ICVV) Consejo Superior de Investigaciones Científicas CSIC-Universidad de La Rioja-Gobierno de La Rioja

Contact the author

Keywords

sensory analysis, phenolic composition, differentiation, prediction, red wines

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Contribution du potentiel glycosidique à l’arôme des vins de Grenache noir et Syrah en Vallée du Rhône

Grenache Noir and Syrah are the predominant grape varieties in the French Rhone valley vineyard, and produce wines with well differentiated aromatic notes. This study aimed at investigating the contribution of glycoconjugated precursors to these aromatic specificities, through their analytical profiles and the sensory influence of the odorant compounds they release during wine aging. The aglycones released by enzymatic hydrolysis of glycosidic extracts

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.

Adaptive winemaking technologies using PIWI varieties in the wine industry of Ukraine

In recent years, the impact of climate change has been pushing agriculture toward the implementation of innovative production methods aimed at countering the negative consequences of climate change.

Variabilité spatiale du gel printanier dans le vignoble champenois : application au zonage climatique

In the Champagne vineyards, spring frosts are the cause of significant variations in the volume of the harvest which are very penalizing for the trade. This variability is reflected both in time (years without frost alternating with years with severe frosts) and in space. Certain sectors of the vineyard are in fact statistically more susceptible to frost than others, but each year no municipality can consider itself immune to this climatic accident. The objective of the study is precisely to analyze the spatial distribution of frost and to determine its main mechanisms, linked to the topography of the hillsides, their orientation but also to regional meteorological variables.

Grape phylloxera leaf-feeding populations in commercial vineyards – a new biotype ?

Grape Phylloxera (Daktulosphaira vitifoliae Fitch) ordinarily has great difficulty establishing leaf galls on the European Grapevine (VitisviniferaL.). Yet populations of leaf-feeding Phylloxera are increasingly being observed throughout commercial vineyards world-wide. Effective plant protection strategies including quarantine actions are currently missing to fight, grape phylloxera populations in affected vineyards and combat linked negative effects on vines and yield. Contrary to the otherwise mandatory continuous infestation pressure from externally established populations (e.g. from populations developed on rootstock foliage or other interspecific hybrids, these leaf-feeding populations seem to establish themselves annually.