IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Abstract

Global climate change is exerting an influence on vine phenology, leading to a decoupling of technological and phenolic maturity of grapes. This results in the modification of berry chemical composition, which can translate into wines with excessive astringency. The addition of mannoproteins (MP) to wine has been proposed as a way of mitigating this problem, since some studies have shown that MPs can modulate wine astringency. However, the mechanism underlying the astringency modulation effect of MPs is not well known and it seems to be dependent on the compositional and structural characteristics of the MP.

MPs are highly glycosylated proteins located in the outermost layer of the yeast cell wall. They are naturally released to the wine by actively growing yeast during alcoholic fermentation and by yeast autolysis during aging on lees. The commercial MP preparations, often used in an empirical way, are obtained from the cell wall of Saccharomyces cerevisiae, the main oenological yeast, to improve wine technological and sensory properties.

In wine, non-Saccharomyces yeasts, such as Torulaspora genre, predominate over S. cerevisiae during the initial phases of spontaneous alcoholic fermentations. However, little is known about the MPs of non-Saccharomyces yeasts and, unlike S. cerevisiae, they have never been considered as a possible source of MPs of oenological interest.

Thus, the objective of this work was to isolate and characterize MPs from the cell wall of Torulaspora delbrueckii and evaluate their effect on red wine astringency. The MPs were obtained from a commercial strain of T. delbrueckii (Lallemand, Inc.) by means of different treatments: induced autolysis and enzymatic and chemical hydrolysis. The MP extracts were characterized as follows. The protein content was determined by Lowry method and the (glycol)protein profile was analyzed by SDS-PAGE. The molecular weight of the MPs was determined by HRSEC-RID and its monosaccharide composition was analyzed after MP hydrolysis and derivatization followed by HPLC-DAD-MS analysis. To evaluate the possible effect of the obtained MPs on astringency, they were added to a red wine and changes in flavanol composition were assessed by HPLC-DAD-MS. In addition, the molecular basis of the MPs effect was also evaluated by studying the interactions between MPs, flavanols and salivary proteins by ITC.

The results showed differences in the structure and composition of the MPs extracted by the application of different treatments. Likewise, the study of the wine flavanol profile and of the MP-flavanol-salivary protein interactions suggested that T. delbrueckii can be a good source of mannoproteins with technological properties to modulate the wine flavanolic composition and the organoleptic properties related to these compounds.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

García-Estévez Ignacio1, Oyón-Ardoiz María1, Manjón Elvira1 and Escribano-Bailón M.Teresa1

1Grupo de Investigación en Polifenoles – University of Salamanca

Contact the author

Keywords

mannoproteins, flavanols, non-Saccharomyces yeasts, Torulaspora delbrueckii, red wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

Use of the soils information system for detailed vineyard soil surveys and as a component of precision viticulture

Vineyard soil surveys can be costly and time consuming. The Soils Information System (SIS) provides a set of tools to do a quick evaluation of soil physical properties in the vineyard. First, a system equipped with GPS and EM38 equipment, provides a very precise DEM and a soil electrical conductivity map. Specific sampling points are located for a tractor-mounted geotechnical probe to make soil physical measurements.

Antioxidant activity of yeast peptides released during fermentation and autolysis in model conditions

Aging wine on lees benefits different wine sensory and technological properties including an enhanced resistance to oxidation. Several molecules released by yeast, such as membrane sterols and glutathione, have been previously proposed as key factors for this activity [1].

Understanding wine as a sensory, emotional, and cognitive experience to promote and communicate conscious consumption

In the complex scenario that the wine industry and its promotion are currently facing, this research proposes a theoretical expansion of the traditional model used to understand the wine experience, namely the classic sensory, emotional and cognitive triad, moving toward a multidimensional approach that also incorporates cultural, symbolic and contextual dimensions in order to comprehend the conscious experience.

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.