IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Abstract

Global climate change is exerting an influence on vine phenology, leading to a decoupling of technological and phenolic maturity of grapes. This results in the modification of berry chemical composition, which can translate into wines with excessive astringency. The addition of mannoproteins (MP) to wine has been proposed as a way of mitigating this problem, since some studies have shown that MPs can modulate wine astringency. However, the mechanism underlying the astringency modulation effect of MPs is not well known and it seems to be dependent on the compositional and structural characteristics of the MP.

MPs are highly glycosylated proteins located in the outermost layer of the yeast cell wall. They are naturally released to the wine by actively growing yeast during alcoholic fermentation and by yeast autolysis during aging on lees. The commercial MP preparations, often used in an empirical way, are obtained from the cell wall of Saccharomyces cerevisiae, the main oenological yeast, to improve wine technological and sensory properties.

In wine, non-Saccharomyces yeasts, such as Torulaspora genre, predominate over S. cerevisiae during the initial phases of spontaneous alcoholic fermentations. However, little is known about the MPs of non-Saccharomyces yeasts and, unlike S. cerevisiae, they have never been considered as a possible source of MPs of oenological interest.

Thus, the objective of this work was to isolate and characterize MPs from the cell wall of Torulaspora delbrueckii and evaluate their effect on red wine astringency. The MPs were obtained from a commercial strain of T. delbrueckii (Lallemand, Inc.) by means of different treatments: induced autolysis and enzymatic and chemical hydrolysis. The MP extracts were characterized as follows. The protein content was determined by Lowry method and the (glycol)protein profile was analyzed by SDS-PAGE. The molecular weight of the MPs was determined by HRSEC-RID and its monosaccharide composition was analyzed after MP hydrolysis and derivatization followed by HPLC-DAD-MS analysis. To evaluate the possible effect of the obtained MPs on astringency, they were added to a red wine and changes in flavanol composition were assessed by HPLC-DAD-MS. In addition, the molecular basis of the MPs effect was also evaluated by studying the interactions between MPs, flavanols and salivary proteins by ITC.

The results showed differences in the structure and composition of the MPs extracted by the application of different treatments. Likewise, the study of the wine flavanol profile and of the MP-flavanol-salivary protein interactions suggested that T. delbrueckii can be a good source of mannoproteins with technological properties to modulate the wine flavanolic composition and the organoleptic properties related to these compounds.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

García-Estévez Ignacio1, Oyón-Ardoiz María1, Manjón Elvira1 and Escribano-Bailón M.Teresa1

1Grupo de Investigación en Polifenoles – University of Salamanca

Contact the author

Keywords

mannoproteins, flavanols, non-Saccharomyces yeasts, Torulaspora delbrueckii, red wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Vitis v. corvina grapes composition and wine sensory profile as affected by different post harvest withering conditions

Context and purpose of the study – In Valpolicella area (Verona – Italy) Vitis vinifera cv. Corvina is the main wine variety to obtain, after grape withering, Amarone wine: this study was carried out in order to compare two different grape dehydration conditions with the aim of verifying the final composition of Corvina dried grapes and the organoleptic profile of corresponding Amarone wine.

Effect of non-wine Saccharomyces yeasts and bottle ageing on the release and generation of aromas in semi-synthetic Tempranillo wines

Explore the variability and contribution of non-wine Saccharomyces yeasts and bottle aging on the release and generation of aromas of semi-synthetic Tempranillo wines, together with an in-depth study of the capacity of these strains to provide good fermentative and oenological qualities

Creativini: an augmented reality card game to promote the learning of the reasoning process of a technical management route for making wine 

Nowadays, the entire viticultural and enological process is wisely thought out according to the style of wine to be produced and the local climatic conditions. Acquiring the approach of a technical management route specific for wine production remains a complex learning process for students. To enhance such learning, The Ecole d’Ingénieurs de PURPAN (PURPAN), an engineering school located in Toulouse southwest France, has recently developed Creativini, a collaborative card game in English made of 150 cards spread into 14 batches. Students in groups of 3 to 6 must design a technical production route, from plant material to bottling.

Within-vineyard spatial variation impacts methoxypyrazine accumulation in the rachis of Cabernet-Sauvignon

To investigate the impact of spatial variation in vine vigour on the accumulation of methoxypyrazines in the rachis of Cabernet-Sauvignon. Cabernet-Sauvignon rachis has been shown to contain significantly higher concentrations

May lactic acid bacteria play an important role in sparkling wine elaboration?

The elaboration of sparkling wine is a demanding process requiring technical as well as scientific skills. Uncovering the role of the terroir to the final product quality is of great importance for the wine market. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown. The malolactic fermentation (MLF) is carried out by the lactic acid bacteria after the alcoholic fermentation in order to ensure the microbial stability during the second fermentation that takes place in the bottle or in tanks. Oenococcus oeni is the only selected species to drive MLF that has been commercialized for sparkling wine elaboration and it is naturally present on grapes, in the cellar and also in the final product. However, whether the bacterial strain contributes to the sensory characteristics of sparkling wine is still questioned.