IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Abstract

Global climate change is exerting an influence on vine phenology, leading to a decoupling of technological and phenolic maturity of grapes. This results in the modification of berry chemical composition, which can translate into wines with excessive astringency. The addition of mannoproteins (MP) to wine has been proposed as a way of mitigating this problem, since some studies have shown that MPs can modulate wine astringency. However, the mechanism underlying the astringency modulation effect of MPs is not well known and it seems to be dependent on the compositional and structural characteristics of the MP.

MPs are highly glycosylated proteins located in the outermost layer of the yeast cell wall. They are naturally released to the wine by actively growing yeast during alcoholic fermentation and by yeast autolysis during aging on lees. The commercial MP preparations, often used in an empirical way, are obtained from the cell wall of Saccharomyces cerevisiae, the main oenological yeast, to improve wine technological and sensory properties.

In wine, non-Saccharomyces yeasts, such as Torulaspora genre, predominate over S. cerevisiae during the initial phases of spontaneous alcoholic fermentations. However, little is known about the MPs of non-Saccharomyces yeasts and, unlike S. cerevisiae, they have never been considered as a possible source of MPs of oenological interest.

Thus, the objective of this work was to isolate and characterize MPs from the cell wall of Torulaspora delbrueckii and evaluate their effect on red wine astringency. The MPs were obtained from a commercial strain of T. delbrueckii (Lallemand, Inc.) by means of different treatments: induced autolysis and enzymatic and chemical hydrolysis. The MP extracts were characterized as follows. The protein content was determined by Lowry method and the (glycol)protein profile was analyzed by SDS-PAGE. The molecular weight of the MPs was determined by HRSEC-RID and its monosaccharide composition was analyzed after MP hydrolysis and derivatization followed by HPLC-DAD-MS analysis. To evaluate the possible effect of the obtained MPs on astringency, they were added to a red wine and changes in flavanol composition were assessed by HPLC-DAD-MS. In addition, the molecular basis of the MPs effect was also evaluated by studying the interactions between MPs, flavanols and salivary proteins by ITC.

The results showed differences in the structure and composition of the MPs extracted by the application of different treatments. Likewise, the study of the wine flavanol profile and of the MP-flavanol-salivary protein interactions suggested that T. delbrueckii can be a good source of mannoproteins with technological properties to modulate the wine flavanolic composition and the organoleptic properties related to these compounds.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

García-Estévez Ignacio1, Oyón-Ardoiz María1, Manjón Elvira1 and Escribano-Bailón M.Teresa1

1Grupo de Investigación en Polifenoles – University of Salamanca

Contact the author

Keywords

mannoproteins, flavanols, non-Saccharomyces yeasts, Torulaspora delbrueckii, red wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Advancement of grape maturity – comparison between contrasting varieties and regions

Grapevine phenology has advanced across many regions, nationally and internationally, in recent decades under the influence of increasing temperatures, resulting in earlier
vintages (Jones and Davis, 2000, Petrie and Sadras, 2008, Tomasi et al., 2011, Webb et al., 2011. Earlier vintages have several ramifications for the wine industry. There are direct implications on quality, due to the fruit ripening during the hotter conditions of summer and early autumn, which then impacts grape composition and wine style (Sadras et al., 2013, Buttrose et al., 1971, Mira de Ordũna, 2010). There are also indirect implications where the fruit is perceived to ripen at a faster rate and the crop reach optimum maturity over a shorter period (Coulter et al., 2016).

Applications of Infrared Spectroscopy from laboratory to industry

The grape and wine industries have long sought rapid, reliable and cost-effective methods to screen and monitor all the stages of the winemaking process, which include grape ripening in the vineyard, harvest and grape reception at the weighbridge, the fermentation stage and the bottling of the final product.

Assessment of O2 consumption, a new tool to select bioprotection yeast strains

Reduction of sulfur dioxide during winemaking is a request from the wine industry. To replace sulfur dioxide, various alternatives exist, including bioprotection by yeast inoculation. This practice consists in adding non-Saccharomyces yeasts directly on the grapes or must.

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).