IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Abstract

Global climate change is exerting an influence on vine phenology, leading to a decoupling of technological and phenolic maturity of grapes. This results in the modification of berry chemical composition, which can translate into wines with excessive astringency. The addition of mannoproteins (MP) to wine has been proposed as a way of mitigating this problem, since some studies have shown that MPs can modulate wine astringency. However, the mechanism underlying the astringency modulation effect of MPs is not well known and it seems to be dependent on the compositional and structural characteristics of the MP.

MPs are highly glycosylated proteins located in the outermost layer of the yeast cell wall. They are naturally released to the wine by actively growing yeast during alcoholic fermentation and by yeast autolysis during aging on lees. The commercial MP preparations, often used in an empirical way, are obtained from the cell wall of Saccharomyces cerevisiae, the main oenological yeast, to improve wine technological and sensory properties.

In wine, non-Saccharomyces yeasts, such as Torulaspora genre, predominate over S. cerevisiae during the initial phases of spontaneous alcoholic fermentations. However, little is known about the MPs of non-Saccharomyces yeasts and, unlike S. cerevisiae, they have never been considered as a possible source of MPs of oenological interest.

Thus, the objective of this work was to isolate and characterize MPs from the cell wall of Torulaspora delbrueckii and evaluate their effect on red wine astringency. The MPs were obtained from a commercial strain of T. delbrueckii (Lallemand, Inc.) by means of different treatments: induced autolysis and enzymatic and chemical hydrolysis. The MP extracts were characterized as follows. The protein content was determined by Lowry method and the (glycol)protein profile was analyzed by SDS-PAGE. The molecular weight of the MPs was determined by HRSEC-RID and its monosaccharide composition was analyzed after MP hydrolysis and derivatization followed by HPLC-DAD-MS analysis. To evaluate the possible effect of the obtained MPs on astringency, they were added to a red wine and changes in flavanol composition were assessed by HPLC-DAD-MS. In addition, the molecular basis of the MPs effect was also evaluated by studying the interactions between MPs, flavanols and salivary proteins by ITC.

The results showed differences in the structure and composition of the MPs extracted by the application of different treatments. Likewise, the study of the wine flavanol profile and of the MP-flavanol-salivary protein interactions suggested that T. delbrueckii can be a good source of mannoproteins with technological properties to modulate the wine flavanolic composition and the organoleptic properties related to these compounds.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

García-Estévez Ignacio1, Oyón-Ardoiz María1, Manjón Elvira1 and Escribano-Bailón M.Teresa1

1Grupo de Investigación en Polifenoles – University of Salamanca

Contact the author

Keywords

mannoproteins, flavanols, non-Saccharomyces yeasts, Torulaspora delbrueckii, red wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.

A new graphical interface as a tool to integrate data from GC-MS and UPLC-MS-QTOF: new compounds related with port wine aging

Port wine value is related to its molecular profile resulting from the changes occurring during the ageing period. It is of empirical knowledge that the style is greatly affected by the oxidation regimens, i.e. bottle versus barrel storage

Novel ATR-FTIR and UV-Vis spectral markers for assessing the Prooxidant/Antioxidant Balance (PAB) in white wines

The browning index (BI), based on the absorbance at 420 nm, is a common oxidation marker in white wines, typically measured after thermal stress (50–60 °C for 5 up to 12 days) in air-saturated wines.

The antioxidant properties of wine lees extracts in model wine

While the ethanol and tartaric acid contained in wine lees are typically recovered by distilleries, the remaining solid fraction (yeast biomass) is usually disposed of, thus negatively affecting the overall sustainability of the wine industry.