WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Abstract

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Viniculture is a huge socio-economic activity throughout the world, 57% of worldwide grape production is for wine-making industry. Wine-making generates huge amounts of by-products (grape pomace (skins, pulp, seeds and stalks), which is around 20 % of total wine production [1]. Wine by-products shown to have a big potential to be used for the extraction of valuable high-added components, however they are sent directly to distilleries for alcohol, spirits and piquette production. The treatment of biomass is often challenging due to its complex matrix

and composition. Heavy industrialization and associated huge environmental impact make reconsidering traditional chemistry methods.

The aim of our work is to valorise valuable components (pectins, fatty acids, polyphenols) from grape by-products by implementing green chemistry methods such as microwave-assisted extraction (MAE), and supercritical CO2 extraction (SFE). In this work, grape pomace from white grapes was considered for the extractions. By using MAE, we were able to extract pectin with a yield up to 8% from grape pomace. Fatty acids were successfully extracted by SFE from grape pomace with CO2 under 40° C, 400 bar and by using ethanol 5% as co-solvent. Water as co-solvent 10 % in supercritical CO2 extraction lead to burgundy coloured liquid, which contained wine related phenolic compounds detected by U-HPLC (gallic and caftaric acids, hydroxytyrosol, catechin). In addition, the coloured extracts undergo pectin isolation procedure and freeze-dried. Initial observation of the extract by FTIR show similar signature to industrial pectin. The findings show possible valorisation of pectin, grape seed oil and phenolic compounds from wine pomace.

[1]        Arvanitoyannis I. S., Ladas D., Mavromatis A., « Wine waste treatment methodology », Int J Food Sci Tech, vol. 41, no 10, p. 1117‑1151, 2006

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Gayane Hayrapetyan, Karen Trchounian, Maria Nikolantonaki , Régis Gougeon, Elias Bou-Maroun, Dijon, Ali Assifaoui

Presenting author

Gayane Hayrapetyan – UMR PAM, Equipe PCAV, Université de Bourgogne/Institut Agro, Dijon

Yerevan State University, Biochemistry, Microbiology, Biophysics, Biotechnologyi | UMR PAM, Equipe PCAV, Université de Bourgogne/Institut Agro, Dijon

Contact the author

Keywords

Winery waste, green chemistry, extraction, SFE CO2, oil, pectin

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Efecto de la cota sobre el potencial enológico de tres varietales tintos en el sur de Tenerife

La zona sur de la Isla de Tenerife elabora principalmente vinos blancos. Desde hace unos años se intenta elaborar mayor cantidad de vinos tintos, siendo los resultados obtenidos variables en función

Zoning like base instrument for the agronomist’s work in vineyard

Ad una prima analisi l’interesse dimostrato dal settore produttivo nei confronti della zonazione vitivinicola è da ricondursi al fatto che dopo i primi approcci puramente accademici

Rare earth elements in grapes and soil: study of different soil extraction methods

Lanthanides, together with scandium and yttrium, make up the group of Rare Earth Elements (REEs). An official method for analysis of the bioavailable REEs accumulated by plants, depending mainly on soil characteristics, chemical speciation in soil and the specific ability of the plant, is still lacking.

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

Climate change is here to stay: adapting vineyards to a warming world

As an industry that thrives more on, but may also be more affected by, vintage variation and regionality than any other agricultural enterprise, grape and wine production is ever more being impacted challenged by climate change.