WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Abstract

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Viniculture is a huge socio-economic activity throughout the world, 57% of worldwide grape production is for wine-making industry. Wine-making generates huge amounts of by-products (grape pomace (skins, pulp, seeds and stalks), which is around 20 % of total wine production [1]. Wine by-products shown to have a big potential to be used for the extraction of valuable high-added components, however they are sent directly to distilleries for alcohol, spirits and piquette production. The treatment of biomass is often challenging due to its complex matrix

and composition. Heavy industrialization and associated huge environmental impact make reconsidering traditional chemistry methods.

The aim of our work is to valorise valuable components (pectins, fatty acids, polyphenols) from grape by-products by implementing green chemistry methods such as microwave-assisted extraction (MAE), and supercritical CO2 extraction (SFE). In this work, grape pomace from white grapes was considered for the extractions. By using MAE, we were able to extract pectin with a yield up to 8% from grape pomace. Fatty acids were successfully extracted by SFE from grape pomace with CO2 under 40° C, 400 bar and by using ethanol 5% as co-solvent. Water as co-solvent 10 % in supercritical CO2 extraction lead to burgundy coloured liquid, which contained wine related phenolic compounds detected by U-HPLC (gallic and caftaric acids, hydroxytyrosol, catechin). In addition, the coloured extracts undergo pectin isolation procedure and freeze-dried. Initial observation of the extract by FTIR show similar signature to industrial pectin. The findings show possible valorisation of pectin, grape seed oil and phenolic compounds from wine pomace.

[1]        Arvanitoyannis I. S., Ladas D., Mavromatis A., « Wine waste treatment methodology », Int J Food Sci Tech, vol. 41, no 10, p. 1117‑1151, 2006

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Gayane Hayrapetyan, Karen Trchounian, Maria Nikolantonaki , Régis Gougeon, Elias Bou-Maroun, Dijon, Ali Assifaoui

Presenting author

Gayane Hayrapetyan – UMR PAM, Equipe PCAV, Université de Bourgogne/Institut Agro, Dijon

Yerevan State University, Biochemistry, Microbiology, Biophysics, Biotechnologyi | UMR PAM, Equipe PCAV, Université de Bourgogne/Institut Agro, Dijon

Contact the author

Keywords

Winery waste, green chemistry, extraction, SFE CO2, oil, pectin

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The smoking gun of climate change in wines

In this audio recording of the IVES science meeting 2022, Antonio Graca (Sogrape, Portugal) speaks about smoke taint and climate change. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Effects of environmental factors and vineyard pratices on wine flora dynamics

he intensification of t vineyard practices led to an impoverishment of the biological diversity. In vineyard management, the reflection to reduce pesticides uses concerns mainly the soil management of the vineyard, and often focuses on flora management in the inter-row.

What do we know about the kerosene/petrol aroma in riesling wines?

1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is a controversial aroma component found in Riesling wines. It belongs to the family of C13-norisoprenoids and is mainly associated with kerosene/petrol notes. TDN can add complexity to the wine aroma at medium – low concentrations and deteriorate the wine bouquet when its content is high. No TDN aromas are usually perceived in young Riesling wines, but they can appear after several years of aging due to the gradual formation of TDN. Management of TDN in Riesling wines is an actual task, since global warming can promote formation of this compound and compromise the aromatic composition of wine. Therefore, the aim of the current work was, firstly, to study the sensory particularities of TDN in Riesling wine at various concentrations. Secondly, to investigate the ability of bottle closures to absorb (scalp) TDN from Riesling wine under various storage conditions. These studies also include the comparative assessment of our findings with previously published data. METHODS: sensory analysis, GC-MS (SBSE), HPLC,1H-NMR and other methods related to the synthesis and determination of TDN. RESULTS: First of all, the method of the synthesis of highly purified TDN (95% and 99.5%) was optimized [1].

Relative impact of crop size and leaf removal on aromatic compounds and phenolic acids of Istrian Malvasia wine

Although several studies investigated the impact of crop size or fruit zone microclimate on aromatic or phenolic composition of wines, the effects of these two practices were not assessed and compared in the same study through a technological experiment within the same vineyard. Therefore, their relative effectiveness is hard to compare, which in turn is essential for providing producers with valuable information as a basis to choose adequate approach in yield and canopy management. The aim of the study was to investigate the effects of two crop sizes and two different fruit zone microclimate conditions obtained by leaf removal in a two-factorial experiment, in order to assess and compare their relative impact on Istrian Malvasia (Vitis vinifera L.) white wine aroma and phenolic composition.

Effect of moderate wine consumption in animal models

In 1979, the so-called “french paradox” was proposed, that is, a correlation between wine consumption, a diet rich in saturated fats, and a low mortality from coronary heart disease. On the other hand, it has also been described that alcohol consumption has negative effects on aging and increases the risk of liver cirrhosis and cancer. However, both hypotheses are based on population studies that may present distortions due to multiple factors (geographic, diet, smoking, socioeconomic level, etc.).