WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Development of bioprospecting tools for oenological applications

Development of bioprospecting tools for oenological applications

Abstract

Wine is the result of a complex biochemical process. From a microbiological point of view, the grape berry is characterised by a heterogeneous microbiota composed of different microorganisms (yeasts, bacteria and filamentous fungi) which will play a predominant role in the quality of the final product. At this level, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process where the sugars in the grapes are transformed into ethanol and carbon dioxide, producing at the same time a large number of additional by-products.

Currently, the demand for indigenous yeast starters, potentially adapted to a defined grape must and reflecting the biodiversity of a particular region, is increasing, supporting the idea that indigenous yeast strains can be associated with a ‘terroir’. Several authors have thus highlighted the action of some non-Saccharomyces species in the chemical composition of wine. Nevertheless, it is still recognised that non-Saccharomyces strains have a low fermentation ability, as they are not able to fully metabolise the sugars in the grape juice and therefore produce low amounts of ethanol, although they have several oenological properties that are fundamental for the organoleptic properties of wine. Thus, the use of a mixed non-Saccharomyces/Saccharomyces ferment, capable of mimicking natural biodiversity, could be a valid alternative to spontaneous fermentation, given the capacity of this ferment to increase the organoleptic properties of the wine and to minimise microbial alterations.

The objectives of this work were to prospect and identify precisely genetically yeasts of interest for the production of fermented beverages according to an innovative protocol in several swiss vineyards, to establish a methodology to phenotypically characterise the isolated yeasts and finally to try to develop a procedure to accompany the winegrowers in their approach of mixed saccharomyces and non-saccharomyces yeasts use.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Benoit Bach, Yannick Barth, Descombes Corentin, Scott Simonin, Marilyn Cléroux, Charles Chappuis, Marie Blackford, Gilles Bourdin, Lefort Francois

Presenting author

Benoit Bach – CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland

YHEPIA, 1254 Jussy, Geneva, Switzerland | HEPIA, 1254 Jussy, Geneva, Switzerland | CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland| CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland | CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland | AGROSCOPE, 1260 Nyon, Vaud, Switzerland | AGROSCOPE, 1260 Nyon, Vaud, Switzerland | HEPIA, 1254 Jussy, Geneva, Switzerland

Contact the author

Keywords

biosprospection, yeasts, wine

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

REDWINE project: use of Chlorella vulgaris to prevent biotic and abiotic stress in Palmela’s region, Portugal, vineyards

The new EU Green Deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050.
REDWine concept will be realized through the establishment of an integrated Living Lab demonstrating the viability of the system at TRL 7. The Living Lab will be able to utilize 2 ton of fermentation off-gas/year (90% of total CO2 produced in the fermenter) and 80 m3 of liquid effluent (100% of the liquid effluent generated during fermenter washing) to produce 1 ton (dry weight) of Chlorella biomass/year. This biomass will be processed under a downstream extraction process to obtain added-value extracts and applied in food, cosmetic and agricultural end-products and to generate a new EcoWine. REDWine will focus on the recovery of off-gas from a 20.000L fermenter of red wine production existing in Adega Cooperativa de Palmela (ACP, located in Palmela, Portugal).

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.

Modelling grape and wine quality through PLS Spline statistical method

Started in 1994, this project intends to explain quality of grapes and wines using data of soil, climate and vineyard that are currently used in field trials.

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.

The kinetics of grape aromatic precursors hydrolysis at three different temperatures

In neutral grapes, it is known that most aroma compounds are present as non-volatile
precursors.