WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Development of bioprospecting tools for oenological applications

Development of bioprospecting tools for oenological applications

Abstract

Wine is the result of a complex biochemical process. From a microbiological point of view, the grape berry is characterised by a heterogeneous microbiota composed of different microorganisms (yeasts, bacteria and filamentous fungi) which will play a predominant role in the quality of the final product. At this level, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process where the sugars in the grapes are transformed into ethanol and carbon dioxide, producing at the same time a large number of additional by-products.

Currently, the demand for indigenous yeast starters, potentially adapted to a defined grape must and reflecting the biodiversity of a particular region, is increasing, supporting the idea that indigenous yeast strains can be associated with a ‘terroir’. Several authors have thus highlighted the action of some non-Saccharomyces species in the chemical composition of wine. Nevertheless, it is still recognised that non-Saccharomyces strains have a low fermentation ability, as they are not able to fully metabolise the sugars in the grape juice and therefore produce low amounts of ethanol, although they have several oenological properties that are fundamental for the organoleptic properties of wine. Thus, the use of a mixed non-Saccharomyces/Saccharomyces ferment, capable of mimicking natural biodiversity, could be a valid alternative to spontaneous fermentation, given the capacity of this ferment to increase the organoleptic properties of the wine and to minimise microbial alterations.

The objectives of this work were to prospect and identify precisely genetically yeasts of interest for the production of fermented beverages according to an innovative protocol in several swiss vineyards, to establish a methodology to phenotypically characterise the isolated yeasts and finally to try to develop a procedure to accompany the winegrowers in their approach of mixed saccharomyces and non-saccharomyces yeasts use.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Benoit Bach, Yannick Barth, Descombes Corentin, Scott Simonin, Marilyn Cléroux, Charles Chappuis, Marie Blackford, Gilles Bourdin, Lefort Francois

Presenting author

Benoit Bach – CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland

YHEPIA, 1254 Jussy, Geneva, Switzerland | HEPIA, 1254 Jussy, Geneva, Switzerland | CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland| CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland | CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland | AGROSCOPE, 1260 Nyon, Vaud, Switzerland | AGROSCOPE, 1260 Nyon, Vaud, Switzerland | HEPIA, 1254 Jussy, Geneva, Switzerland

Contact the author

Keywords

biosprospection, yeasts, wine

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Variety specific thresholds for plant-based indicators of vine nitrogen status

Aim: Several plant-based indicators of vine N status are reported in the literature. Among these, yeast assimilable nitrogen in grape must (YAN) and total N concentration of petiole and leaf blades are considered to be reliable indicators and so is the chlorophyll index, measured with a device called N-tester. The N-tester index is used to measure the intensity of the green colour of the leaf blade, and therefore to estimate its chlorophyll content.

Effects of auxin treatment on compositional and molecular ripening dynamics in grape varieties of northern Italy

Context and purpose of the study. The temperature increase related to ongoing climate changes is causing a progressive anticipation of the ripening time, negatively affecting grape quality at harvest.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Terroir valorization strategies in a reformed denomination area: the Prosecco case study

Aims: This work summarizes some of the upmost recent studies and valorization strategies concerning the Prosecco wine production area. After the geographical denomination Prosecco (DO) was strongly reformed in 2009, the newborn DOCG (controlled and guaranteed DO) and DOC (controlled DO) areas have required different and specific strategies to promote and protect the value of their production.

Mechanical fruit zone leaf removal and deficit irrigation practices interact to affect yield and fruit quality of Cabernet Sauvignon grown in a hot climate

Cabernet Sauvignon is the top red wine cultivar in CA, however, the hot climate in Fresno is not ideal for Cabernet Sauvignon, particularly for berry color development. Fruit-zone leaf removal and irrigation were studied previously to have the significant effect on grape yield performance and berry quality. But the timing of leaf removal and the timing of irrigation are still inconclusive. Also, mechanical fruit-zone leaf removal is relatively new in CA. Our study aims to identify the interactive effect of mechanical fruit-zone leaf removal and irrigation on Cabernet Sauvignon’s yield performance and fruit quality and find the ideal timing of leaf removal and irrigation to maximize the berry color while maintaining the sustainable yield level.