WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Development of bioprospecting tools for oenological applications

Development of bioprospecting tools for oenological applications

Abstract

Wine is the result of a complex biochemical process. From a microbiological point of view, the grape berry is characterised by a heterogeneous microbiota composed of different microorganisms (yeasts, bacteria and filamentous fungi) which will play a predominant role in the quality of the final product. At this level, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process where the sugars in the grapes are transformed into ethanol and carbon dioxide, producing at the same time a large number of additional by-products.

Currently, the demand for indigenous yeast starters, potentially adapted to a defined grape must and reflecting the biodiversity of a particular region, is increasing, supporting the idea that indigenous yeast strains can be associated with a ‘terroir’. Several authors have thus highlighted the action of some non-Saccharomyces species in the chemical composition of wine. Nevertheless, it is still recognised that non-Saccharomyces strains have a low fermentation ability, as they are not able to fully metabolise the sugars in the grape juice and therefore produce low amounts of ethanol, although they have several oenological properties that are fundamental for the organoleptic properties of wine. Thus, the use of a mixed non-Saccharomyces/Saccharomyces ferment, capable of mimicking natural biodiversity, could be a valid alternative to spontaneous fermentation, given the capacity of this ferment to increase the organoleptic properties of the wine and to minimise microbial alterations.

The objectives of this work were to prospect and identify precisely genetically yeasts of interest for the production of fermented beverages according to an innovative protocol in several swiss vineyards, to establish a methodology to phenotypically characterise the isolated yeasts and finally to try to develop a procedure to accompany the winegrowers in their approach of mixed saccharomyces and non-saccharomyces yeasts use.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Benoit Bach, Yannick Barth, Descombes Corentin, Scott Simonin, Marilyn Cléroux, Charles Chappuis, Marie Blackford, Gilles Bourdin, Lefort Francois

Presenting author

Benoit Bach – CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland

YHEPIA, 1254 Jussy, Geneva, Switzerland | HEPIA, 1254 Jussy, Geneva, Switzerland | CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland| CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland | CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland | AGROSCOPE, 1260 Nyon, Vaud, Switzerland | AGROSCOPE, 1260 Nyon, Vaud, Switzerland | HEPIA, 1254 Jussy, Geneva, Switzerland

Contact the author

Keywords

biosprospection, yeasts, wine

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Pedological factor influence on the viticultural zoning of the Aljarafe Alto (Seville, Spain)

Aljarafe Alto est une petite zone naturelle dans le département de Séville (Espagne), où le cépage autochtone cultivé est le Palomino Garrido Fino.

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.

A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

The current climate changes are directly threatening the balance of the vineyard at harvest time. The maturation period of the grapes is shifted to the middle of the summer, at a time when radiation and air temperature are at their maximum. In this context, the implementation of corrective practices becomes problematic. Unfortunately, our knowledge of the climate effect on the quality of different grape varieties remains very incomplete to guide these choices. During the Innovine project, original experiments were carried out on Syrah to study the combined effects of normal or high air temperature and varying degrees of exposure of the berries to the sun. Berries subjected to these different conditions were sampled and analyzed throughout the maturation period. Several quality characteristics were determined, including anthocyanin content. The objective of the experiments was to investigate which climatic determinants were most important for anthocyanin accumulation in the berries. Temperature and irradiance data, observed over time with a very thin discretization step, are called functional data in statistics. We developed the procedure SpiceFP (Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable (a grape berry quality variable for example) by two or three functional predictors (as temperature and irradiance) in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results. Analysis of the data using SpiceFP identified a negative impact of morning combinations of low irradiance (lower than about 100 μmol m−2 s−1 or 45 μmol m−2 s−1 depending on the advanced-delayed state of the berries) and high temperature (higher than 25oC). A slight difference associated with overnight temperature occurred between these effects identified in the morning.

Use of fumaric acid to control pH and inhibit malolactic fermentation in wines

In this audio recording of the IVES science meeting 2022, Antonio Morata (Universidad Politécnica de Madrid, Madrid, Spain) speaks about the use of fumaric acid to control pH and inhibit malolactic fermentation in wines.

Isotope composition of wine as indicator of terroir spatial variability

The goal of this work was to determine the spatial variability of terroir using the isotope composition of wine. Carbon (δ13C) and oxygen (δ18O) stable isotope composition was measured in wines from Tempranillo (Vitis vinifera L.) vineyard, located in Rioja Appellation (Spain). Stable isotope composition, leaf area, vigour, yield components, grape and wine composition were determined in a grid of 85 geo-referenced points, that was drawn across the 5 ha vineyard area