WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Development of bioprospecting tools for oenological applications

Development of bioprospecting tools for oenological applications

Abstract

Wine is the result of a complex biochemical process. From a microbiological point of view, the grape berry is characterised by a heterogeneous microbiota composed of different microorganisms (yeasts, bacteria and filamentous fungi) which will play a predominant role in the quality of the final product. At this level, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process where the sugars in the grapes are transformed into ethanol and carbon dioxide, producing at the same time a large number of additional by-products.

Currently, the demand for indigenous yeast starters, potentially adapted to a defined grape must and reflecting the biodiversity of a particular region, is increasing, supporting the idea that indigenous yeast strains can be associated with a ‘terroir’. Several authors have thus highlighted the action of some non-Saccharomyces species in the chemical composition of wine. Nevertheless, it is still recognised that non-Saccharomyces strains have a low fermentation ability, as they are not able to fully metabolise the sugars in the grape juice and therefore produce low amounts of ethanol, although they have several oenological properties that are fundamental for the organoleptic properties of wine. Thus, the use of a mixed non-Saccharomyces/Saccharomyces ferment, capable of mimicking natural biodiversity, could be a valid alternative to spontaneous fermentation, given the capacity of this ferment to increase the organoleptic properties of the wine and to minimise microbial alterations.

The objectives of this work were to prospect and identify precisely genetically yeasts of interest for the production of fermented beverages according to an innovative protocol in several swiss vineyards, to establish a methodology to phenotypically characterise the isolated yeasts and finally to try to develop a procedure to accompany the winegrowers in their approach of mixed saccharomyces and non-saccharomyces yeasts use.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Benoit Bach, Yannick Barth, Descombes Corentin, Scott Simonin, Marilyn Cléroux, Charles Chappuis, Marie Blackford, Gilles Bourdin, Lefort Francois

Presenting author

Benoit Bach – CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland

YHEPIA, 1254 Jussy, Geneva, Switzerland | HEPIA, 1254 Jussy, Geneva, Switzerland | CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland| CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland | CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland | AGROSCOPE, 1260 Nyon, Vaud, Switzerland | AGROSCOPE, 1260 Nyon, Vaud, Switzerland | HEPIA, 1254 Jussy, Geneva, Switzerland

Contact the author

Keywords

biosprospection, yeasts, wine

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The performance of grapevines on identified terroirs in Stellenbosch, South Africa

A terroir can be defined as a natural unit that is characterised by a specific agricultural potential, which is imparted by natural environmental features, and is reflected in the characteristics of the final product.

Influence du terroir et de la conduite du verger sur la composition des pommes à cidre

L’économie cidricole française est concentrée dans les régions du grand Ouest avec environ 40% de la production nationale de pommes à cidre pour la seule région Bas-Normande où le Pays d’Auge occupe

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Deficit irrigation is a viticultural practice often applied to improve the phenolic composition of red grapes and wines. However, the impact of this practice on grape terpenes – key aromatics for several grapes and wines – remains largely unknown. This study investigated the impact of deficit irrigation strategies on free and glycosylated terpenes in Gewürztraminer grapes. In a field study conducted in Oliver, BC, in 2016, 2017, and 2018, deficit irrigation regimes were applied to Gewürztraminer vines at different developmental stages (pre-veraison = Early Deficit, ED; post-veraison = Late Deficit, LD; throughout the season = Prolonged Deficit, PD). A well-irrigated control (CN) treatment was also established.

Impact of winemaking practises on the formation of pinking

The pinking is a phenomenon that can occur in white wine produced with white grape causing the color change from yellow to red-salmon hue. Even if its appearance is highly variable and dependent to the vintage, the wines from certain grape varieties, such as Sauvignon blanc, Chardonnay, Riesling and Trebbiano di Lugana, have been identified to be more susceptible to the pinking.