WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Comparison between the volatile chemical profile of two different blends for the enhancement of  “Valpolicella Superiore”

Comparison between the volatile chemical profile of two different blends for the enhancement of  “Valpolicella Superiore”

Abstract

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.

From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

The study aimed to evaluate the volatile chemical and sensory composition of two different blends, one “traditional” (70% Corvina, 30% Rondinella) and an “experimental” (60% Corvinone, 20% Corvina, 20% Rondinella).

The grapes were supplied by six wineries in Valpolicella, four of which provided both blends, whereas two companies provided only traditional modality.

Winemaking was performed under standardized conditions . Free volatile compounds as well as those obtained through hydrolysis of glycosidic precursors were analysed with gas chromatography mass spectrometry (GC-MS) coupled with SPE and SPME extractions.

Fermentation kinetics were found to be influenced by the different composition of the blends.

Differences between different blends were attributable both to varietal as well as fermentative compounds.

Interesting differences were found between the various classes of volatile compounds in relation to the two different blends, confirming how by changing the two different blends we can define two very different styles of wines. Traditional-blends wines have been found to be richer in free terpenes and C6 alcohols, while experimental-blends wines have been found richer in free norisoprenoids (in particular TDN, -ionone and β-damascenone), benzenoids and alcohols. Traditional-blends wines have been also found richer in almost all bound compounds (especially ethyl esters, terpens and benzenoids).

In conclusion, this study highlighted the different  blends’ potential studied to produce wines with specific and different aromatic profiles.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Giacomo Cristanelli, Nicolas Ferraro, Giovanni Luzzini, Davide Slaghenaufi, Maurizio Ugliano

Presenting author

Giacomo,Cristanelli – Dipartimento di Biotecnologie dell’Università di Verona

Dipartimento di Biotecnologie,Università di Verona | Dipartimento di Biotecnologie,Università di Veronai | Dipartimento di Biotecnologie,Università di Verona | Dipartimento di Biotecnologie,Università di Verona

Contact the author

Keywords

Valpolicella Superiore-corvina-Corvinone

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Terroir characterization from cv. Merlot and Sauvignon plots follow-up within the scope of wine-production : “Vins de Pays Charentais” in the Cognac eaux-de-vie vineyard area

Dans les études des terroirs, il est souvent délicat d’établir des zonages et de mesurer les effets de l’environnement sur les vins. Avec plus d’un million d’hectares dans l’aire d’appellation délimitée, le terroir du célèbre vignoble de Cognac est bien connu pour ces eaux-de-vie et ainsi divisé en 6 crus.

Enological characterization of mold resistant varieties grown in the Trentino Alpine Region

Among the different strategies used in vine growing to fight against mold diseases, it can be pointed out the hybridation of traditional grape varieties with others, presenting a genetic resistance to pathogen attack. The research in this field has been encouraged in recent years due to the increased concern about human safety and environmental pollution linked to the use of agrochemicals. This approach allows to limit the number of treatments and the type of active compounds used in vine management. The environment determines the pressure degree of the diseases on vines and the biologic response of the plant to their attack.

Smoke tainted wine – what now?

The frequency of bushfires close to wine regions around the world has increased in the last two decades. The economic losses incurred when grapes and wines are discarded due to ‘smoke taint’ are substantial (i.e., hundreds of millions of dollars). Efforts to mitigate and ameliorate smoke taint are therefore crucial. Chardonnay, rosé and cabernet sauvignon wines made from grapes exposed to smoke during the 2020 wildfires in eastern Australia were subjected to various amelioration techniques: the addition of activated carbons, molecularly imprinted polymers (mips), and a proprietary resin (either directly, or following membrane filtration); spinning cone column (scc) distillation; and finally, transformation into vinegar.

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines.

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.