WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Impact of enological enzymes on aroma profile of Prosecco wines during second fermentation and sur lie aging

Impact of enological enzymes on aroma profile of Prosecco wines during second fermentation and sur lie aging

Abstract

Proseccco is a famous italian Protected Designation of Origin (PDO) produced in two regions: Veneto e Friuli Venezia Giulia, however, the production is mainly concentrated in the province of Treviso. These territories are characterized by plains with some hilly areas and temperate climate. Its Production regulation provides a minimum utilization of 85% of Glera grapes, a local white grape variety, and up to a maximum of 15% of other local and international varieties. Prosecco second fermentation takes place, according to the Charmat method, in autoclaves.

As a results of this, Prosecco is characterized by floral and fruity notes being perceived as a every-day wine. However, a possible product differentiation in order to reach new market niches could be achieved though wine aging on yeast lees in autoclave after secondary fermentation in order to promote yeast lysis and compounds extractions from their cells (mannoproteins, polysaccharide, amino acid). These compounds have an impact on mouthfeel and could improve wine organoleptic characteristics. A strategy to accelerate this process, it is the usage of specific enzymes during second fermentation.

The aim of this study was to investigate the effect of the addition of enzymes during secondary fermentation and aging on Prosecco wine volatile compounds composition by GC-MS techniques.

For the purpose of this study a base wine prepared for second fermentation, supplemented with five different pectolytic enzymes (plus a control) and fermented with two different yeasts. Second fermentation was performed at 16 °C. Samples were analyzed at the end of second fermentation and after one and three months of sur lie aging.

The results showed few differences between the different enzymes in the aromatic profile, more differences were found in the later stages of aging. In light of the use of different yeasts, a fair yeast-enzyme interaction was observed. In particular, a significant effect in both batches was observed for the biochemical classes of norisoprenoids (TPB, TDN, and vitispirane), terpinen-4-ol, ethyl cinnamate, and DMS. The significant effect of ethyl cinnamate was associated with increased cinnamyl esterase activity of a particular enzyme preparation. Effects due to yeast-enzyme interaction have been observed on other compounds, particularly terpenoids such as linalool, geraniol, α-terpineol and geranyl acetate.

In conclusion, the use of pectolytic enzymes is an excellent way to modulate mouthfee

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Davide Slaghenaufi, Giovanni Luzzini, Maurizio Ugliano

Presenting author

Davide Slaghenaufi – Department of Biotechnology, University of Verona

Department of Biotechnology, University of Verona | Department of Biotechnology, University of Verona

Contact the author

Keywords

Prosecco, Second fermentation, enzyme, aging, volatile compounds

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

AI and blockchain synergy-driven reconstruction of nutritional health value chains in the wine industry

The increasing demand for healthier, more transparent, and sustainable wine products has prompted the need for innovative solutions to optimize the wine health value chain.

The soil biodiversity as a support to environmental sustainability in vineyard

The environmental biodiversity is important to guarantee essential services to the living communities, its richness is a symptom of a minor disturbance and improves he environment biological quality.

New biotechnological approaches for a comprehensive characterization of AGL11 and its molecular mechanism underlying seedlessness trait in table grape

In table grapes seedlessness is a crucial breeding target, mainly results from stenospermocarpy, linked to the Thompson Seedless variety. Several studies investigated the genetic control of seedlessness identifying AGL11, a MADS-box transcription factor, as a crucial gene.
We performed a deep investigation of the whole AGL11 gene sequence in a collection of grapevine varieties revealing three different promoter-CDS combinations. By investigating the expression of the three AGL11 alleles and evaluating their ability to activate the promoter region, we show that AGL11 regulates its transcription in a specific promoter-CDS manner. By a multi-AGL11 co-expression analysis we identified a methyl jasmonate esterase, an indole-3-acetate beta-glucosyltransferase, and an isoflavone reductase as top AGL11 candidate targets. In vivo experiments further confirmed AGL11 role in regulating these genes, demonstrating its significant influence in seed development and thus in seedlessness trait.

New plant protein extracts as fining agents for red wines

AIM: Quinoa (Chenopodium quinoa) is a non-allergenic pseudocereal with a high protein content