WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Wine aging : a bottleneck Story ?

Wine aging : a bottleneck Story ?

Abstract

The sporadic oxidation of white wines remains an open question, making wine shelf life a subjective debate. Through a multidisciplinary synoptic approach performed as a remarkable case study on aged bottles of white wine, this work unraveled a yet unexplored route for uncontrolled oxidation.

The objective was to characterize the contribution of stoppers on bottle aging of white wines in real condition, with particular emphasis on the bottleneck/stopper interface. Oxidation was observed in a few bottles of white wine coming from the same vintage and production lot, i.e., visual examination showed obvious color evolution. To investigate this phenomenon, a multidisciplinary approach was designed combining sensory evaluation, targeted and non-targeted chemical analyses, and physical investigation with both the wine and the system composed of the stopper and the bottleneck.

First, both the sensory evaluation and the chemical analyses of classical enological parameters unambiguously revealed the different oxidative states of the four bottles, with, for each vintage, one bottle being oxidized compared to the other. Further, a metabolomics analysis was performed by FT-ICR-MS. A total of 532 masses were significantly more intense in Ox or NoOx wines, of which 175 m/z values were distinct for Ox wines and 357m/z values for NoOx wines. Lastly, the oxygen transfer rate was first determined through the whole system composed of the glass bottleneck containing the cork stopper, then on the cork stopper alone with the interface glued (after uncorking). The diffusion coefficient of oxygen through the cork stopper alone was similar for all stoppers. However, the transfer of oxygen through the cork/glass bottleneck system was higher than through the cork alone, and much higher for bottles containing the Ox wines. It shows unambiguously that the transfer of oxygen at the interface between the cork stopper and the glass bottleneck must be considered a potentially significant contributor to oxidation state during the bottle aging, leading to a notable modification of a wine’s chemical signature.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Julie Chanut, Thomas Karbowiak, Kevin Crouvisier-Urion, Aurélie Lagorce, Jordi Ballester, André Geoffroy, Chloé Roullier-Gall, Régis D. Gougeon, Philippe Schmitt-Kopplin, Jean-Pierre Bellat

Presenting author

Julie Chanut – Agrosup Dijon, UMR PAM

Agrosup Dijon, UMR PAM, Kevin Crouvisier-Urion | Agrosup Dijon, UMR PAM | Agrosup Dijon, UMR PAM | UMR PAM, Institut Universitaire de la Vigne et du Vin, André Geoffroy | UMR PAM, Institut Universitaire de la Vigne et du Vin | UMR PAM, Institut Universitaire de la Vigne et du Vin | Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, HelmholtzZentrum München | Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS,

Contact the author

Keywords

Wine oxidation, Cork/bottleneck interface, Oxygen transfer

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Enhancing hydric stress tolerance by editing the VviMYB60 promoter with CRISPR/Cas9 

Climate change presents increasing challenges to viticulture, particularly with rising water stress contributing significantly to yield losses and damages. The identification of the MYB60 transcription factor, which regulates stomatal opening and closing in Arabidopsis thaliana and Vitis vinifera, offers potential solutions. Notably, knockout studies in Arabidopsis have shown reduced stomatal opening and increased drought tolerance in myb60 mutants. Additionally, the grapevine ortholog, VviMYB60, can restore the wild-type phenotype of Arabidopsis myb60 mutants. Further investigation of the Arabidopsis promoter region has revealed that mutations in DOF motifs lead to reduced expression of AtMYB60.

Free and bound terpene profile of recovered minority white grape varieties by GC × GC-TOFMS

Climate change presents a significant challenge for actual viticulture. In this context, recovering minority grape varieties can be a crucial strategy to ensure resilience, particularly those capable of maintaining quality and aromatic complexity under water stress.

The use of rootstock as a lever in the face of climate change and dieback of vineyard

As viticulture faces challenges such as climate change or vineyard dieback, the choice of the variety and rootstock becomes more and more crucial. To study rootstock levers in the Bordeaux region, a parcel of Cabernet Sauvignon (CS) was planted with four rootstocks in 2014. Twenty repetitions of each of the following four rootstocks were set up: 101-14 MGt, Nemadex AB, 420A MGt and Gravesac. The number of bunches, yields and pruning weights of the vine shoots were measured individually on 240 vines from 2017 to 2021. Since 2020, nitrogen status assessed by assimilable nitrogen level, hydric status assessed by δ13C and berry maturity were measured on 80 samples taken from 20 repetitions of the four rootstocks. A lower yield was measured for CS grafted onto Nemadex AB due to the lower number of bunches and the lower weight of berries. The differences between the other three rootstocks are small, but CS grafted onto 420A MGt was the most productive. The CS grafted onto Nemadex AB had the lowest pruning weight while 101-14 MGt had the highest. In 2020, δ13C showed a more moderate water stress with 101-14 MGt and 420A MGt than with Nemadex AB. Surprisingly, the Gravesac was under more stress than the 101-14 MGt. The nitrogen status in the berries was better for Nemadex AB but this was perhaps due to the significantly lower weight of the berries.Rootstock 101-14 MGt attained the highest accumulation of sugars in the berries while 420A MGt allows to preserve higher acidity. The parcel is still young which may explain some of the results. These measures must therefore be continued over the next several years to fully assess the effects of these rootstocks on the development of the vines and the quality of the production under new climatic conditions.

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

Investigating kokumi flavour oligopeptides in wine

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the Kokumi sensory concept [1].