WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Wine aging : a bottleneck Story ?

Wine aging : a bottleneck Story ?

Abstract

The sporadic oxidation of white wines remains an open question, making wine shelf life a subjective debate. Through a multidisciplinary synoptic approach performed as a remarkable case study on aged bottles of white wine, this work unraveled a yet unexplored route for uncontrolled oxidation.

The objective was to characterize the contribution of stoppers on bottle aging of white wines in real condition, with particular emphasis on the bottleneck/stopper interface. Oxidation was observed in a few bottles of white wine coming from the same vintage and production lot, i.e., visual examination showed obvious color evolution. To investigate this phenomenon, a multidisciplinary approach was designed combining sensory evaluation, targeted and non-targeted chemical analyses, and physical investigation with both the wine and the system composed of the stopper and the bottleneck.

First, both the sensory evaluation and the chemical analyses of classical enological parameters unambiguously revealed the different oxidative states of the four bottles, with, for each vintage, one bottle being oxidized compared to the other. Further, a metabolomics analysis was performed by FT-ICR-MS. A total of 532 masses were significantly more intense in Ox or NoOx wines, of which 175 m/z values were distinct for Ox wines and 357m/z values for NoOx wines. Lastly, the oxygen transfer rate was first determined through the whole system composed of the glass bottleneck containing the cork stopper, then on the cork stopper alone with the interface glued (after uncorking). The diffusion coefficient of oxygen through the cork stopper alone was similar for all stoppers. However, the transfer of oxygen through the cork/glass bottleneck system was higher than through the cork alone, and much higher for bottles containing the Ox wines. It shows unambiguously that the transfer of oxygen at the interface between the cork stopper and the glass bottleneck must be considered a potentially significant contributor to oxidation state during the bottle aging, leading to a notable modification of a wine’s chemical signature.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Julie Chanut, Thomas Karbowiak, Kevin Crouvisier-Urion, Aurélie Lagorce, Jordi Ballester, André Geoffroy, Chloé Roullier-Gall, Régis D. Gougeon, Philippe Schmitt-Kopplin, Jean-Pierre Bellat

Presenting author

Julie Chanut – Agrosup Dijon, UMR PAM

Agrosup Dijon, UMR PAM, Kevin Crouvisier-Urion | Agrosup Dijon, UMR PAM | Agrosup Dijon, UMR PAM | UMR PAM, Institut Universitaire de la Vigne et du Vin, André Geoffroy | UMR PAM, Institut Universitaire de la Vigne et du Vin | UMR PAM, Institut Universitaire de la Vigne et du Vin | Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, HelmholtzZentrum München | Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS,

Contact the author

Keywords

Wine oxidation, Cork/bottleneck interface, Oxygen transfer

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Composition and molar mass distribution of different must and wine colloids

A major problem for winemakers is the formation of proteinaceous haze after bottling. Although the exact mechanisms remain unclear, this haze is formed by unfolding and agglomeration of grape proteins, being additionally influenced by numerous further factors.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L).

Study of yeast biocatalytic activity on grape aroma compounds

Many volatile compounds of different chemical/biochemical origin contribute to wine aroma. Certain key ‘varietal’ aroma compounds such as methoxypyrazines are formed in the grape and appear to be only scarcely influenced by fermentation.

VITOUR – The European World Heritage Vineyards

UNESCO World Heritage as the link, Europe as the area covered. VITOUR network is born on this idea, on Loire Valley Mission and InterLoire’s initiative. It gathers vineyards inscribed on UNESCO World Heritage List.