WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 From the current probabilistic approach to a deterministic production process, a clear step towards digital transformation in the wine sector

From the current probabilistic approach to a deterministic production process, a clear step towards digital transformation in the wine sector

Abstract

Currently, to consistently ensure the maintenance of a wine-style while benefiting from the utmost rigor made possible by the winemaking process, the composition of the wine blend is made using sensory control. This is performed after the wine is made with no real possibility of deterministic intervention.

However, different sensory profiles are frequently observed in high-volume wines fermented from the same grape must batch under similar fermentation conditions. So far, it has not been possible, using winery-available resources, to understand the drivers of these differences. Moreover, the impact of using a sulphitation / desulphitation process of stabilization on the varietal aromatic potential of white must is unknown.

Indeed, for modeling sensory evolution from must to wine, it is necessary to know, quite in-depth, the chemical a specific metabolic state characteristic of each style (this being a sensory profile) and study the relationships between sensory descriptors and volatile compounds described to be markers of sensory typicality (key-compounds) in determining high-volume mass-market standard profiles.

In this study, the varietal aromatic potential of 1 ML of white grape must was characterized during sulphitation / desulphitation process, together with the resulting wines, fermented by a controlled process using sensors to measure different key-parameters. The volatile composition and glycosylated fraction were studied by comprehensive two-dimensional chromatography (GC x GC-ToFMS) according to procedures previously implemented in the x-Chromatography Lab (http://xchromatographylab.x10.mx/). Obtained results indicate that the stabilization process by sulphitation / desulphitation has a highly significant impact on must composition, resulting from a complex network of effects. Five main groups of aroma descriptors were used in the sensory analysis of wines resulting from this project (herbaceous / vegetable, citrus, tropical fruits, orchard fruits and floral). Two-part information networks were built combining chemical and sensory information. It was possible to observe a grouping of experimental wines for the same binomen must origin / yeast. In addition, each wine displayed individuality with respect to sensory analysis, volatile profile and physicochemical parameters.

This work involves a new concept, still underexploited in the wine sector, promising to totally revolutionize classical concepts of oenology by integrating, in the same pro

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Natacha Fontes, Cátia Martins, Sara Cunha e Silva, António Graça, Silvia M. Rocha, António Graça

Presenting author

Natacha Fontes – Sogrape, Rua 5 de outubro, 4527, 4430-809 Avintes, Portugal

QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal | Sogrape, Rua 5 de outubro, 4527, 4430-809 Avintes, Portugal | Sogrape, Rua 5 de outubro, 4527, 4430-809 Avintes, Portugal | QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal, ,

Contact the author

Keywords

varietal aromatic potential – wine-style – grape must stabilization – key-compounds – digital transformation

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Preliminary results on the effect of different organic mulching on wine polyphenol content

Soil mulching is an interesting strategy to reduce soil evaporation, assist in weed control, improve soil structure and organic content, increase soil water infiltration, and decrease diurnal temperature fluctuations

Bunch placement effects on dehydration kinetics and physico-chemical composition of Nebbiolo grapes

Sforzato di Valtellina DOCG is a special reinforced red wine produced using withered Nebbiolo grapes. The withering process takes place in traditional rooms under natural environmental conditions; it starts immediately after the harvest and ends not before the 1st December of the same year. The process can be performed with different bunch placements that can influence the grapes features.The purpose of the study is to compare the effect on grape physico-chemical parameters for four withering bunch placement systems: hanged clusters (HC), plastic crates (CT), breathable mesh fabric on wooden frames panels (MF), and reed mats (RM). For all the systems studied, the withering length was two months at a temperature between 6 and 19 °C and a relative humidity of 41-88%.

The impact of nutrition label formats on wine consumer preferences

Recent regulations concerning alcoholic beverages have prompted producers to revise their product labels to incorporate nutritional information. In this context, qr codes containing such information, known as e-labels, are now being employed on wine labels for the first time.

Understanding the expression of gene families involved in anthocyanin biosynthesis during berry ripening: Tannat as a case study

The quality of wine is assessed, among other things, by its color, which is mainly due to its anthocyanin content. These pigments are polyphenols that give red, purple and blue hues depending on the relative proportion of anthocyanins produced by the action of flavonoid 3’5′ hydroxylase (delphinidin-3-glucoside, petunidin-3-glucoside, malvidin-3-glucoside) or flavonoid 3′ hydroxylase (cyanidin-3-glucoside, peonidin-3-glucoside). To study the genes involved in this biosynthetic pathway, we focused on Vitis vinifera cv. Tannat, known for producing wines with higher anthocyanin content and darker purple color compared to most red grape varieties. In this work, we have performed RNA-Seq analysis of skins during berry development, taking green and red berries at 50% veraison as separate samples, as an experimental strategy to focus on the differential expression of genes of interest.

Unconventional methods to delve deeper into the influence of temperature and nutrition on Chardonnay wine profiles

Temperature and yeast nutrition profoundly impact wine quality and sensory attributes by modulating yeast aroma production and release during fermentation. While temperature and nitrogen’s individual effects are well-studied, their combined influence, including nutrient type and addition timing, remains underexplored. hence, this study aimed to investigate the simultaneous effects of these factors on fermentation kinetics, aroma production and sensory profile, particularly in a Chardonnay wine production selected as a quite aromatically neutral base.