WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 From the current probabilistic approach to a deterministic production process, a clear step towards digital transformation in the wine sector

From the current probabilistic approach to a deterministic production process, a clear step towards digital transformation in the wine sector

Abstract

Currently, to consistently ensure the maintenance of a wine-style while benefiting from the utmost rigor made possible by the winemaking process, the composition of the wine blend is made using sensory control. This is performed after the wine is made with no real possibility of deterministic intervention.

However, different sensory profiles are frequently observed in high-volume wines fermented from the same grape must batch under similar fermentation conditions. So far, it has not been possible, using winery-available resources, to understand the drivers of these differences. Moreover, the impact of using a sulphitation / desulphitation process of stabilization on the varietal aromatic potential of white must is unknown.

Indeed, for modeling sensory evolution from must to wine, it is necessary to know, quite in-depth, the chemical a specific metabolic state characteristic of each style (this being a sensory profile) and study the relationships between sensory descriptors and volatile compounds described to be markers of sensory typicality (key-compounds) in determining high-volume mass-market standard profiles.

In this study, the varietal aromatic potential of 1 ML of white grape must was characterized during sulphitation / desulphitation process, together with the resulting wines, fermented by a controlled process using sensors to measure different key-parameters. The volatile composition and glycosylated fraction were studied by comprehensive two-dimensional chromatography (GC x GC-ToFMS) according to procedures previously implemented in the x-Chromatography Lab (http://xchromatographylab.x10.mx/). Obtained results indicate that the stabilization process by sulphitation / desulphitation has a highly significant impact on must composition, resulting from a complex network of effects. Five main groups of aroma descriptors were used in the sensory analysis of wines resulting from this project (herbaceous / vegetable, citrus, tropical fruits, orchard fruits and floral). Two-part information networks were built combining chemical and sensory information. It was possible to observe a grouping of experimental wines for the same binomen must origin / yeast. In addition, each wine displayed individuality with respect to sensory analysis, volatile profile and physicochemical parameters.

This work involves a new concept, still underexploited in the wine sector, promising to totally revolutionize classical concepts of oenology by integrating, in the same pro

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Natacha Fontes, Cátia Martins, Sara Cunha e Silva, António Graça, Silvia M. Rocha, António Graça

Presenting author

Natacha Fontes – Sogrape, Rua 5 de outubro, 4527, 4430-809 Avintes, Portugal

QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal | Sogrape, Rua 5 de outubro, 4527, 4430-809 Avintes, Portugal | Sogrape, Rua 5 de outubro, 4527, 4430-809 Avintes, Portugal | QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal, ,

Contact the author

Keywords

varietal aromatic potential – wine-style – grape must stabilization – key-compounds – digital transformation

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Optimization of a tool to determine the oxygen avidity of a wine through the kinetics of consumption by its phenolic and aromatic fractions (PAFs)

Wine oxidation phenomena during the different processes of winemaking, aging and storage are closely related to the presence of oxygen and to the wine’s capacity for consumption.

Looking for a more efficient genotypes in water use. A key for a sustainable viticulture

Aim: Grapevine has traditionally been widely cultivated in drylands. However, in recent decades, a significant part of the viticulture all over the word and specifically in Mediterranean basin, is being irrigated. In recent years, due to climate change, among other reasons, the available natural water resources have been reduced substantially compromising the sustainability of viticulture, especially in the most arid areas

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.

Significance of factors making Riesling an iconic grape variety

Riesling is the iconic grape variety of Germany and accounts for 23% of the German viticulture acreage, which comprises 45% of the worldwide Riesling plantings. Riesling wines offer a wide array of styles from crisp sparkling wines to highly concentrated and sweet Trockenbeerenauslese or Icewines. However, its thin berry skin makes Riesling more vulnerable to detrimental environmental threats than other white wine varieties.  

Effects of future climate change on grape quality: a case study for the Aglianico grape in Campania region, Italy

Water deficits limit yields and this is one of the negative aspects of climate change. However, this applies particularly when emphasis is on biomass production (e.g. for crops like maize, wheat, etc.)