WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 From the current probabilistic approach to a deterministic production process, a clear step towards digital transformation in the wine sector

From the current probabilistic approach to a deterministic production process, a clear step towards digital transformation in the wine sector

Abstract

Currently, to consistently ensure the maintenance of a wine-style while benefiting from the utmost rigor made possible by the winemaking process, the composition of the wine blend is made using sensory control. This is performed after the wine is made with no real possibility of deterministic intervention.

However, different sensory profiles are frequently observed in high-volume wines fermented from the same grape must batch under similar fermentation conditions. So far, it has not been possible, using winery-available resources, to understand the drivers of these differences. Moreover, the impact of using a sulphitation / desulphitation process of stabilization on the varietal aromatic potential of white must is unknown.

Indeed, for modeling sensory evolution from must to wine, it is necessary to know, quite in-depth, the chemical a specific metabolic state characteristic of each style (this being a sensory profile) and study the relationships between sensory descriptors and volatile compounds described to be markers of sensory typicality (key-compounds) in determining high-volume mass-market standard profiles.

In this study, the varietal aromatic potential of 1 ML of white grape must was characterized during sulphitation / desulphitation process, together with the resulting wines, fermented by a controlled process using sensors to measure different key-parameters. The volatile composition and glycosylated fraction were studied by comprehensive two-dimensional chromatography (GC x GC-ToFMS) according to procedures previously implemented in the x-Chromatography Lab (http://xchromatographylab.x10.mx/). Obtained results indicate that the stabilization process by sulphitation / desulphitation has a highly significant impact on must composition, resulting from a complex network of effects. Five main groups of aroma descriptors were used in the sensory analysis of wines resulting from this project (herbaceous / vegetable, citrus, tropical fruits, orchard fruits and floral). Two-part information networks were built combining chemical and sensory information. It was possible to observe a grouping of experimental wines for the same binomen must origin / yeast. In addition, each wine displayed individuality with respect to sensory analysis, volatile profile and physicochemical parameters.

This work involves a new concept, still underexploited in the wine sector, promising to totally revolutionize classical concepts of oenology by integrating, in the same pro

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Natacha Fontes, Cátia Martins, Sara Cunha e Silva, António Graça, Silvia M. Rocha, António Graça

Presenting author

Natacha Fontes – Sogrape, Rua 5 de outubro, 4527, 4430-809 Avintes, Portugal

QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal | Sogrape, Rua 5 de outubro, 4527, 4430-809 Avintes, Portugal | Sogrape, Rua 5 de outubro, 4527, 4430-809 Avintes, Portugal | QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal, ,

Contact the author

Keywords

varietal aromatic potential – wine-style – grape must stabilization – key-compounds – digital transformation

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

Relationships between vine isohydricity and changes of fruit growth and metabolism during water deficit

The frequency of water deficits is increasing in many grape-growing regions due to climate change.

Brettanomyces bruxellensis, born to live

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

Phenolic and volatile profiles of south tyrolean pinot blanc musts and young wines

AIM. Assess the impact of different vineyards and winemaking variables on the phenolic and volatile profiles of Pinot Blanc musts and young wines from South Tyrol.

Effects of the synergy between T. delbrueckii and S. cerevisiae in the winemaking of traditional cultivars from southeastern Italy

The combination of Torulaspora delbrueckii and Saccharomyces cerevisiae in co-inoculation and sequential inoculation in winemaking was investigated as an innovative strategy to increase the aromatic profile of wines like Verdeca and Nero di Troia wines, two traditional varieties from south-eastern Italy (Apulia Region).