WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 From the current probabilistic approach to a deterministic production process, a clear step towards digital transformation in the wine sector

From the current probabilistic approach to a deterministic production process, a clear step towards digital transformation in the wine sector

Abstract

Currently, to consistently ensure the maintenance of a wine-style while benefiting from the utmost rigor made possible by the winemaking process, the composition of the wine blend is made using sensory control. This is performed after the wine is made with no real possibility of deterministic intervention.

However, different sensory profiles are frequently observed in high-volume wines fermented from the same grape must batch under similar fermentation conditions. So far, it has not been possible, using winery-available resources, to understand the drivers of these differences. Moreover, the impact of using a sulphitation / desulphitation process of stabilization on the varietal aromatic potential of white must is unknown.

Indeed, for modeling sensory evolution from must to wine, it is necessary to know, quite in-depth, the chemical a specific metabolic state characteristic of each style (this being a sensory profile) and study the relationships between sensory descriptors and volatile compounds described to be markers of sensory typicality (key-compounds) in determining high-volume mass-market standard profiles.

In this study, the varietal aromatic potential of 1 ML of white grape must was characterized during sulphitation / desulphitation process, together with the resulting wines, fermented by a controlled process using sensors to measure different key-parameters. The volatile composition and glycosylated fraction were studied by comprehensive two-dimensional chromatography (GC x GC-ToFMS) according to procedures previously implemented in the x-Chromatography Lab (http://xchromatographylab.x10.mx/). Obtained results indicate that the stabilization process by sulphitation / desulphitation has a highly significant impact on must composition, resulting from a complex network of effects. Five main groups of aroma descriptors were used in the sensory analysis of wines resulting from this project (herbaceous / vegetable, citrus, tropical fruits, orchard fruits and floral). Two-part information networks were built combining chemical and sensory information. It was possible to observe a grouping of experimental wines for the same binomen must origin / yeast. In addition, each wine displayed individuality with respect to sensory analysis, volatile profile and physicochemical parameters.

This work involves a new concept, still underexploited in the wine sector, promising to totally revolutionize classical concepts of oenology by integrating, in the same pro

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Natacha Fontes, Cátia Martins, Sara Cunha e Silva, António Graça, Silvia M. Rocha, António Graça

Presenting author

Natacha Fontes – Sogrape, Rua 5 de outubro, 4527, 4430-809 Avintes, Portugal

QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal | Sogrape, Rua 5 de outubro, 4527, 4430-809 Avintes, Portugal | Sogrape, Rua 5 de outubro, 4527, 4430-809 Avintes, Portugal | QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal, ,

Contact the author

Keywords

varietal aromatic potential – wine-style – grape must stabilization – key-compounds – digital transformation

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Étude de la composante climatique du terroir viticole en Val de Loire : relation avec les facteurs physiques du milieu

The research carried out by the URVV of the INRA center in Angers aims to develop a methodology for the integrated characterization of the natural factors of viticultural terroirs, representative of the operating conditions of the vine and the sensory differences of the wines. In this context, the concept of Basic Terroir Unit (UTB) has been developed. The UTB represents a viticultural surface of variable geographical extension, defined as the association in a given place of a geological, pedological and landscape component, Morlat (1989), Riou et al. (1995).

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.

Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

The choice of sites for viticulture depends on natural environmental factors, particularly climate, as grapevines have specific climatic requirements for optimum physiological performance and berry quality achievement. In the Stellenbosch wine-producing region, the complex topography and the proximity of the ocean create a variety of topoclimates resulting in different growth conditions for vines within short distances.

Conservation: the best valorisation strategy for wine growing areas

Terroir encompasses many elements, including environment, grapes and human inputs that together contribute to the final wine quality of a certain wine growing area.

Extraction of stilbenes from grape cane waste and their possible applications

Vine pruning residues constitute a significant fraction of vitivinicultural waste; in fact, depending on the variety and training system, they can reach 1-5 tons/ha/year.