WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Posters 9 Polyphenols in kombucha: impact of infusion time on extraction and investigation of their behavior during “fermentation”

Polyphenols in kombucha: impact of infusion time on extraction and investigation of their behavior during “fermentation”

Abstract

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. Polyphenols are expected to be responsible of several health benefits attributed to kombucha consumption, among other metabolites. This study investigated the impact of tea infusion time and of kombucha “fermentation”, on total phenolic content, proanthocyanidins concentration and the color. It was determined that pH decrease during fermentation was the origin of kombucha color loss. Moreover, fermentation impacts the profile of black and green tea polyphenols more than infusion time between 30 minutes and 1 hour. Results suggest a significant release of phenolic compounds during “fermentation” possibly caused by the hydrolysis of molecular bounds, such as gallate ester bounds.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Thierry Tran, Cosette Grandvalet, Antoine  Martin, Hervé Alexandre, Raphaëlle Tourdot-Maréchal

Presenting author

Thierry, Tran – UMR PAM – Team VAlMiS

UMR PAM – Team VAlMiS, Verdier, François | Biomère

Contact the author

Keywords

kombucha, polyphenols, color, fermentation, extraction

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Cultivation site effect on the quality of Moscato di Pantelleria

n 1997 and 1999, sixteen cultivation sites of cv. Muscat of Alexandria different for pedological conditions, altitude and exposition were selected through all Pantelleria isle. In 1997 in each site

Intra-vineyard spatial variability explored over multiple seasons by sensor-based techniques in the Valpolicella area

The identification and management of intra-vineyard variability are key to precision viticulture, and sensors have been proven to be highly efficient tools for detecting these variations.

Acumulación de materia seca, orientada a valorar la fijación de carbono, en función del aporte de riego y la pluviometría, en Cabernet-Sauvignon a lo largo de 15 años

The vineyard is capable of fixing carbon in its permanent structure from atmospheric carbon dioxide, through the process of gas exchange and the performance of photosynthesis. The photosynthetic capacity of the vineyard depends on the water resources that the plant may have at its disposal, so the amount of dry matter, derived from the processed photosynthates, that it can store will depend on the water regime of the crop, both in the annually renewable organs as in permanent parts.