WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Posters 9 Polyphenols in kombucha: impact of infusion time on extraction and investigation of their behavior during “fermentation”

Polyphenols in kombucha: impact of infusion time on extraction and investigation of their behavior during “fermentation”

Abstract

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. Polyphenols are expected to be responsible of several health benefits attributed to kombucha consumption, among other metabolites. This study investigated the impact of tea infusion time and of kombucha “fermentation”, on total phenolic content, proanthocyanidins concentration and the color. It was determined that pH decrease during fermentation was the origin of kombucha color loss. Moreover, fermentation impacts the profile of black and green tea polyphenols more than infusion time between 30 minutes and 1 hour. Results suggest a significant release of phenolic compounds during “fermentation” possibly caused by the hydrolysis of molecular bounds, such as gallate ester bounds.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Thierry Tran, Cosette Grandvalet, Antoine  Martin, Hervé Alexandre, Raphaëlle Tourdot-Maréchal

Presenting author

Thierry, Tran – UMR PAM – Team VAlMiS

UMR PAM – Team VAlMiS, Verdier, François | Biomère

Contact the author

Keywords

kombucha, polyphenols, color, fermentation, extraction

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Nitrogen partitioning among vine organs as a consequence of cluster thinning

Agroscope is investigating the impact of yield on nitrogen (N) partitioning in grapevine and on must composition. The mechanism of N assimilation

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).

Thinner topsoil improves vine growth and fruit composition in Mid-Atlantic United States vineyards

Aim: The aim of this study was to investigate the impact of topsoil thickness on dormant pruning weights, cluster compactness, and fruit composition (°Brix, titratable acidity, pH) in the Mid-Atlantic of the United States. 

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

Bioprotection en phase pré-fermentaire, synthèse de 3 ans d’expérimentations dans différentes régions viticoles

With growing consumer interest in products without chemical additives, limiting the use of sulfites is a priority for the wine industry. Bioprotection is a biological alternative that avoids or reduces the risks of alterations that have a negative impact on the organoleptic quality of wines and, ultimately, on their acceptability to consumers. bioprotection can also provide a response to the risks of microbiological deviations, which are increased both by climate change and by the organization of harvesting operations, which increasingly include the use of multi-bins filled at the vine, exposing the harvest to sometimes high temperatures for longer periods of time.