WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Preliminary characterisation of mannoproteins from different wine yeast strains and impact on wine properties

Preliminary characterisation of mannoproteins from different wine yeast strains and impact on wine properties

Abstract

Mannoproteins (MPs) are released from the yeast cell wall during alcoholic fermentation and aging on the lees, and influence aspects of wine quality such as haze formation and colour stability. Yet, as this is a slow process with microbiological and sensory risks, the exogenous addition of extracted MPs poses an efficient alternative. While Saccharomyces cerevisiae has long been studied as a prominent source for MPs extraction, their structure and composition greatly differ between yeast species. This may influence their behaviour in the wine matrix and subsequent impact on wine properties. However, although wine yeast species other than S. cerevisiae possibly present an untapped source of MPs, they are still ill-characterised in terms of chemical composition and influence on wine.

This study aimed to characterise the composition of MPs extracted from different wine yeast strains, and to investigate the impact of their addition on wine properties of organoleptic significance. MPs extracted and purified from four strains belonging to four different species (Saccharomyces cerevisiae, Saccharomyces boulardii, Metschnikowia fructicola and Torulaspora delbrueckii) were subjected to HR-SEC and GC-MS analyses to determine polysaccharide size distribution and monosaccharide composition, respectively. After addition of these MPs to Cabernet Sauvignon and Chardonnay wines, samples taken over the course of 6 months were analysed for protein stability, colour stability, browning potential and astringency.

HR-SEC analyses of the MPs revealed differences in size distribution patterns between species both in terms of the maximum and the medium molecular weight observed. MPs impact on the four different wine parameters tested were dependent on several factors, including time since MPs addition, and the yeast strain of origin. For example, whereas the addition of MPs from S. cerevisiae and S. boulardii showed increased white wine protein stability after 3 months, M. fructicola and T. delbrueckii did not.

The results obtained in this study form an important step towards further characterisation of mannoproteins derived from non-Saccharomyces yeast species. While the variable impact of MPs from different species on wine properties is an important aspect to consider in winemaking applications, further information regarding the influence of variations in MPs structure and composition could be used to better understand this effect.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Carla Snyman, Nathalie Sieczkowski, Matteo Marangon, Benoit Divol

Presenting author

Carla Snyman – South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa

Lallemand SAS, 19 rue des briquetiers, BP 59, 31702 Blagnac, France | Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell’Università, 16, 35020, Legnaro, Padova, Italy | South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa

Contact the author

Keywords

Non-Saccharomyces – mannoprotein – characterisation – HR-SEC – wine properties

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Selected ion flow tube mass spectrometry: a promising technology for the high throughput phenotyping of grape berry volatilome

Wine grapes breeding has been concentrating a lot of efforts within the grape research community over the last decade. The quick phenotyping of genotype quality traits including aroma composition remains challenging. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), a technology first available in 2008 and developing rapidly, could be particularly valuable for this usage. The aims of this study were i) to use SIFT-MS, to analyze the whole volatilome from different grape varieties, ii) to assess the ability of this technology to discriminate varieties according to their grape aroma composition, and iii) to study the stability of SIFT-MS signal over maturation to define a sampling strategy.

The use of unripe frozen musts for modulating wine characteristics throughout acidity correction – effects on volatile and amino acid composition

As environmental issues come more to the fore, vineyards residues are being looked at as solutions rather than problems. Aiming to develop a sustainable methodology for musts acidity correction in the process of winemaking, much needed in warm regions, the present study was performed according to Circular Economy values.

Sensory evaluation of the effect of anthocyanins on in-mouth perceptions

In this audio recording of the IVES science meeting 2022, Maria Paissoni (Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy) speaks about sensory evaluation of the effect of anthocyanins on in-mouth perceptions. This presentation is based on an original article accessible for free on OENO One.

Sensory changes in wines associated with the ripening of Grenache grapes from vineyards in different climatic zones

Climate change is introducing a high variability on grape ripening, causing uncertainty, excessive spending on pesticides and eventually frustrating results in terms of the quality of the vintage, with the increasingly frequent appearance of aromatic problems associated with overripeness, raisining and greenness, which sometimes only appear in bottled wines.

Monitoring grapevine downy mildew epidemics with SkySat and PlanetScope imagery

Grapevine downy mildew (GDM), caused by the oomycete Plasmopara viticola, is one of the most destructive diseases of Vitis vinifera worldwide. All V. vinifera cultivars are susceptible to P. viticola infection, and epidemics can spread across an entire vineyard within a matter of weeks. Severe outbreaks cause substantial reductions in yield and fruit quality. Tracking GDM spread by manual scouting is time-consuming and unfeasible over large spatial extents.