WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Preliminary characterisation of mannoproteins from different wine yeast strains and impact on wine properties

Preliminary characterisation of mannoproteins from different wine yeast strains and impact on wine properties

Abstract

Mannoproteins (MPs) are released from the yeast cell wall during alcoholic fermentation and aging on the lees, and influence aspects of wine quality such as haze formation and colour stability. Yet, as this is a slow process with microbiological and sensory risks, the exogenous addition of extracted MPs poses an efficient alternative. While Saccharomyces cerevisiae has long been studied as a prominent source for MPs extraction, their structure and composition greatly differ between yeast species. This may influence their behaviour in the wine matrix and subsequent impact on wine properties. However, although wine yeast species other than S. cerevisiae possibly present an untapped source of MPs, they are still ill-characterised in terms of chemical composition and influence on wine.

This study aimed to characterise the composition of MPs extracted from different wine yeast strains, and to investigate the impact of their addition on wine properties of organoleptic significance. MPs extracted and purified from four strains belonging to four different species (Saccharomyces cerevisiae, Saccharomyces boulardii, Metschnikowia fructicola and Torulaspora delbrueckii) were subjected to HR-SEC and GC-MS analyses to determine polysaccharide size distribution and monosaccharide composition, respectively. After addition of these MPs to Cabernet Sauvignon and Chardonnay wines, samples taken over the course of 6 months were analysed for protein stability, colour stability, browning potential and astringency.

HR-SEC analyses of the MPs revealed differences in size distribution patterns between species both in terms of the maximum and the medium molecular weight observed. MPs impact on the four different wine parameters tested were dependent on several factors, including time since MPs addition, and the yeast strain of origin. For example, whereas the addition of MPs from S. cerevisiae and S. boulardii showed increased white wine protein stability after 3 months, M. fructicola and T. delbrueckii did not.

The results obtained in this study form an important step towards further characterisation of mannoproteins derived from non-Saccharomyces yeast species. While the variable impact of MPs from different species on wine properties is an important aspect to consider in winemaking applications, further information regarding the influence of variations in MPs structure and composition could be used to better understand this effect.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Carla Snyman, Nathalie Sieczkowski, Matteo Marangon, Benoit Divol

Presenting author

Carla Snyman – South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa

Lallemand SAS, 19 rue des briquetiers, BP 59, 31702 Blagnac, France | Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell’Università, 16, 35020, Legnaro, Padova, Italy | South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa

Contact the author

Keywords

Non-Saccharomyces – mannoprotein – characterisation – HR-SEC – wine properties

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Aromatic profile of chardonnay – clone 809: from berry to sparkling wine in an altitude vineyard

ine consumption is linked to the aromatic profile, consumer acceptance, and reflects the viticultural and oenological practices applied, together with the study related to clones is a way to evaluate the adaptation

Grapevine sugar concentration model in the Douro Superior, Portugal

Increasingly warm and dry climate conditions are challenging the viticulture and winemaking sector. Digital technologies and crop modelling bear the promise to provide practical answers to those challenges. As viticultural activities strongly depend on harvest date, its early prediction is particularly important, since the success of winemaking practices largely depends upon this key event, which should be based on an accurate and advanced plan of the annual cycle. Herein, we demonstrate the creation of modelling tools to assess grape ripeness, through sugar concentration monitoring. The study area, the Portuguese Côa valley wine region, represents an important terroir in the “Douro Superior” subregion. Two varieties (cv. Touriga Nacional and Touriga Franca) grown in five locations across the Côa Region were considered. Sugar accumulation in grapes, with concentrations between 170 and 230 g l-1, was used from 2014 to 2020 as an indicator of technological maturity conditioned by meteorological factors. The climatic time series were retrieved from the EU Copernicus Service, while sugar data were collected by a non-profit organization, ADVID, and by Sogrape, a leading wine company. The software for calibrating and validating this model framework was the Phenology Modeling Platform (PMP), version 5.5, using Sigmoid and growing degree-day (GDD) models for predictions. The performance was assessed through two metrics: Roots Mean Square Error (RMSE) and efficiency coefficient (EFF), while validation was undertaken using leave-one-out cross-validation. Our findings demonstrate that sugar content is mainly dependent on temperature and air humidity. The models achieved a performance of 0.65

A spatial explicit inventory of EU wine protected designation of origin to support decision making in a changing climate

Winemaking areas recognized as protected designations of origin (PDOs) shape important economic, environmental and cultural values that are tied to closely defined geographic locations. To preserve wine products and wine-growing practices adopted in different PDOs these areas are strictly regulated by legal specifications. However, quality viticulture is increasingly under pressure from climate change, which is altering the local conditions of many winegrowing areas. Therefore, maintaining traditional wine products will require the adoption of tailored adaptation strategies, including possible changes in the legal regulation of protected wines. To this end, it is necessary to have a comprehensive knowledge on PDOs including their extension, products and allowed practices. While there have been efforts to build databases that summarize the characteristics for individual wine PDO areas and to quantify the related effects of climate change, much information is still included only in the official documentation of the EU geographical indication register and has never been collected in a comprehensive manner. With this study we aim at filling this gap by building a spatial inventory of European wine PDOs that supports decision making in viticulture in the context of climate change. To map and characterize European wine PDOs, we analysed their legal documents and extracted relevant information useful for climate change adaptation. The output consists of a comprehensive geographical dataset that identifies the boundaries of all 1200 European wine PDOs at unprecedented spatial resolution and includes a set of legally binding regulations, such as authorized vine varieties, maximum yields and planting density. The inventory will allow researchers to analyse the impacts of climate change on European wine PDOs and support decision makers in developing tailored adaptation strategies. This includes, among others, the evaluation of new vineyard site selection, the expansion of cultivated varieties or the authorization of irrigation in vineyards.

The use of epifluorescence versus plating to monitor the effect of different parameters on microorganisms in wine

The monitoring of the number of micro-orgranisms in wine is crucial for the wine producer. Traditional counting methods include microscopic enumeration and plating on selective media, which measures the culturability of the cells. The use of epifluorescence microscopy is, however, a method, which can measure both culturability and

Two dimensions, one mission: unlocking grape composition by GC × GC

Aroma is one of the most important attributes that determine consumer’s perception of the sensory quality of wine and varietal typicity.