WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 IMPACT ON CHITOSAN APPLICATION OF DIFFERENT MICROORGANISMS HAVING OENOLOGICAL INTEREST

IMPACT ON CHITOSAN APPLICATION OF DIFFERENT MICROORGANISMS HAVING OENOLOGICAL INTEREST

Abstract

Chitosan is an effective antimicrobial agent available in the wine industry, because it ensures the control of a of spoilage microorganisms, such as Brettanomyces of lactic acid bacteria.

In this work, an exhaustive characterization of 12 commercial chitosans was performed in accordance with the OIV methods. These analyses made it possible to determine the animal or fungal origin of the 12 samples. Furthermore, ionic chromatography coupled with an amperometric detector (IC-PAD) confirmed peculiar polysaccharide profiles for fungal and animal-derived chitosans. The antimicrobial activity of chitosans was evaluated against a large pool of microorganisms involved in wine industry, studding the specie-specific sensitivity and their mechanism of action. Chitosans were tested in static and stirred conditions, in a synthetic grape must, in order to discriminate against the physical settling of cells and their specific antimicrobial activity. Moreover, the activity of the soluble portion of chitosan was checked by inoculating microorganisms in the media after chitosans removal.

The results highlighted the different sensitivity of microorganisms to chitosans, allowing selective control of spoilage agents. However, the yeast and bacteria involved in fermentation were damaged by chitosan, and the synthetic media treated with this molecule showed a less fermentative aptitude. The evidence obtained in laboratory were validated by tests performed in winery. A commercial chitosan was further tested during the semi-industrial cold stabulation of grape must prior the alcoholic fermentation, however with inconclusive results.

In conclusion, the work confirms that chitosan is a promising tool oenology, but an in-depth study of the biochemical interaction between chitosan and food microorganisms is necessary.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Raffaele Guzzon, Tomas Roman, Tiziana Nardin, Roberto Larcher

Presenting author

Raffaele Guzzon Fondazione Edmund Mach – Fondazione Edmund Mach

Fondazione Edmund Mach, Fondazione Edmund Mach, Fondazione Edmund Mach

Contact the author

Keywords

Chitosan, Brettanomyces, Grape cold stabulation, Wine spoilag

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.

Molecular binding mechanisms between grape seed polypeptides and wine anthocyanins by fluorescence spectroscopy and computational techniques

In recent years, proteins endogenous to grape have become of great interest to the wine industry because they represent a new alternative to other biopolymers subjected to more legal restrictions (i.e. animal origin and synthetics) that can be used in technological applications to modulate sensory attributes such as wine color and have a positive impact on wine quality.

Evaluation of vineyards, fruit and wine affected by wild fire smoke

Wineries may randomly reject fruit from vineyards near wild fires exposed to smoke. It is difficult to determine if fruit has been compromised in quality when exposed to smoke

Effect of environmentally friendly vineyard protection strategies on yeast ecology during fermentation

AIM: Currently, an increasing concern from governments and consumers about environmental sustainability of wine production provides new challenges for innovation in wine industry. Accordingly, the application of more-environmentally friendly vineyard treatments against fungal diseases (powdery and downy mildew) could have a cascading impact on yeast ecology of wine production.

Managing soil health in vineyards: knowns and unknowns 

The use of soil conservation practices in wine grape production is becoming common throughout the world in response to an increased awareness of the value of soil health to maintain crop productivity and environmental quality. However, little information is available on the meaning of soil health within a viticultural context, and what soil properties should be targeted to achieve both the agronomic and environmental goals of wine grape producers. Conservation practices lead to increases in soil organic matter which may improve soil water retention, and increase soil C content therefore constituting a potential avenue to adapt to droughts and sequester C. Well-known management practices such as the use of cover crops, compost or no-till, although effective, seem to result in highly variable outcomes in soil organic matter and other soil health indicators. This variability is likely associated to the application of the practices in different soils and climates. Thus, integration of soil health building practices needs a thorough understanding of their efficacy under different conditions. Furthermore, additions of soil organic matter could trigger emissions of CO2 and N2O, a potent greenhouse gas that could represent a potential tradeoff of soil conservation practices. Finally, nutrient and water availability may be affected by the increase in soil organic matter having consequences for vine balance and grape quality.