WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 IMPACT ON CHITOSAN APPLICATION OF DIFFERENT MICROORGANISMS HAVING OENOLOGICAL INTEREST

IMPACT ON CHITOSAN APPLICATION OF DIFFERENT MICROORGANISMS HAVING OENOLOGICAL INTEREST

Abstract

Chitosan is an effective antimicrobial agent available in the wine industry, because it ensures the control of a of spoilage microorganisms, such as Brettanomyces of lactic acid bacteria.

In this work, an exhaustive characterization of 12 commercial chitosans was performed in accordance with the OIV methods. These analyses made it possible to determine the animal or fungal origin of the 12 samples. Furthermore, ionic chromatography coupled with an amperometric detector (IC-PAD) confirmed peculiar polysaccharide profiles for fungal and animal-derived chitosans. The antimicrobial activity of chitosans was evaluated against a large pool of microorganisms involved in wine industry, studding the specie-specific sensitivity and their mechanism of action. Chitosans were tested in static and stirred conditions, in a synthetic grape must, in order to discriminate against the physical settling of cells and their specific antimicrobial activity. Moreover, the activity of the soluble portion of chitosan was checked by inoculating microorganisms in the media after chitosans removal.

The results highlighted the different sensitivity of microorganisms to chitosans, allowing selective control of spoilage agents. However, the yeast and bacteria involved in fermentation were damaged by chitosan, and the synthetic media treated with this molecule showed a less fermentative aptitude. The evidence obtained in laboratory were validated by tests performed in winery. A commercial chitosan was further tested during the semi-industrial cold stabulation of grape must prior the alcoholic fermentation, however with inconclusive results.

In conclusion, the work confirms that chitosan is a promising tool oenology, but an in-depth study of the biochemical interaction between chitosan and food microorganisms is necessary.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Raffaele Guzzon, Tomas Roman, Tiziana Nardin, Roberto Larcher

Presenting author

Raffaele Guzzon Fondazione Edmund Mach – Fondazione Edmund Mach

Fondazione Edmund Mach, Fondazione Edmund Mach, Fondazione Edmund Mach

Contact the author

Keywords

Chitosan, Brettanomyces, Grape cold stabulation, Wine spoilag

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

The South African vineyard landscapes: impact on long term cultural practices

This paper follows the one presented by Saayman at the International Symposium on Landscapes of Vines and Wines in the Loire Valley during July 2003. Where Saayman’s paper described the heritage and development of South African vineyard landscapes, this one focuses on how the landscape is used to assist in decision-making concerning the most important long term practices.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-
UPLC/FTMS).

Viticultural agroclimatic cartography and zoning at mesoscale level using terrain information, remotely sensed data and weather station measurements. Case study of Bordeaux winegrowing area

Climate is a key variable for grapevine development and berry ripening processes. At mesoscale level, climate spatial variations are often determined empirically, as weather station networks are generally not dense enough to account for local climate variations.