WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 SKIN AND SEED EXTRACTS DIFFERENTLY BEHAVE TOWARDS SALIVARY PROTEINS

SKIN AND SEED EXTRACTS DIFFERENTLY BEHAVE TOWARDS SALIVARY PROTEINS

Abstract

Polyphenols extracted from skins and seeds showed different sensory attributes including astringency and bitterness. In previous studies, it has been demonstrated that extracts obtained either from skins or seeds interact differently with salivary proteins. Red grape winemaking consists of a maceration of the whole berries in which both skins and seeds are mixed together; however, no information on the mutual influence that skins and seeds could have on the reactivity towards saliva of hydroalcoholic extracts is known. In this study, five different wine model solutions were prepared: the first one contained only skins(Sk), the second one contained only seeds(Sd) and the remaining three contained different sk/sd ratios, as detailed below:A(ratio 2:1 sk:sd), B(ratio 1:1 sk:sd) and C(ratio 1:2 sk:sd). HPLC analyses were performed to determine the content of total native anthocyanins, acetaldehyde and polymeric pigments. Iron reactive phenolics, BSA reactive tannins (BSArT), vanillin reactive flavans (VRF) were also determined. The potential astringency of red samples was evaluated in vitro by the Saliva Precipitation index (SPI). The results obtained highlighted important differences in the behavior of the samples as a function of the different sk:sd ratio. When sk and sd were simultaneously present (samples A,B and C), a significant lower content of anthocyanins with respect to Sk was observed. This was likely due to a possible adsorption of pigments on cell walls contained in pomaces. As the amount of seeds increased in the solutions containing also skins, the content of VRF,BSArT,PP and acetaldehyde linearly increased. After 24 months of aging under controlled conditions, all the trends observed at 0 time were confirmed and appeared to be enhanced. Concerning the interactions toward salivary proteins, as expected, sample Sd showed the highest SPI. Surprisingly, when skins were added to a model solution containing seeds, a decrease of SPI occurred, although VRF and BSArT increased. This suggests that anthocyanins and polymeric pigments in A, B and C samples determined a lower reactivity of compounds contained in the whole solution towards saliva proteins. SPI values are not correlated to the amount of VRF and BSArT in the samples. Results highlighted not only the important role of the sk:sd ratio in the extraction of compounds from berries, but also that of anthocyanins extracted from skins in decreasing the reactivity of grape compounds towards saliva.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Francesco Errichiello, Antonio Guerriero, Luigi Picariello, Francesca Coppola, Alessandra Rinaldi, Martino Forino, Angelita Gambuti.

Presenting author

Francesco Errichiello – Department of Agricultural Sciences, Grape and Wine Science Division, University of Naples “Federico II”, Viale Italia (Angolo Via Perrottelli), 83100 Avellino, Italy.

Department of Agricultural Sciences, Grape and Wine Science Division, University of Naples “Federico II”, Viale Italia (Angolo Via Perrottelli), 83100 Avellino, Italy;Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France,

Contact the author

Keywords

skin/seed extract, anthocyanins, polymeric pigments, astringency

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character.

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors.

Development of a LC-FTMS method to quantify natural sweeteners in red wines

The quality of a wine is largely related to the balance between its sourness, bitterness and sweetness. Recently, molecules coming from grapes have been showed to notably contribute to sweet taste of dry wines. To study the viticultural and oenological parameters likely to affect their concentration, their quantification appears of high interest and subsequently requires powerful analytical techniques. Therefore, a new method using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) was developed and validated to quantify epi-DPA-3′-O-β-glucopyranoside acid (epi-DPA-G) and astilbin, sweet molecules identified in wine. Three gradients were tested on five different C18 columns (Hypersil Gold, HSS T3, BEH, Syncronis and Kinetex).

Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, converting L-malic acid into L-lactic acid and carbon dioxide, and it contributes to microbial stability. Wine pH is highly selective, and at pH below 3.5 generally only strains of O. oeni can survive and express malolactic activity, while under more favorable growth conditions above pH 3.5, species of Lactobacillus and Pediococcus may conduct the MLF. Among the LAB species Lactiplantibacillus plantarum strains have shown most interesting results under hot climate conditions, not only for their capacity to induce MLF, but also for their homo-fermentative properties towards hexose sugars, which makes them suitable for induction of MLF in high pH and high alcohol wines, when inoculated at the beginning of alcoholic fermentation.

The effects of antioxidants and gas sparging on New Zealand white wines

This study aims to investigate the effects of different conditions of grape processing or fermentation on the aroma profile of New Zealand white wines.

The opportunities offered by the climate change

Based on the results of experiments since 2000 at the Institut Agro Montpellier and at INRAE – Pech Rouge, and on the international experience acquired during scientific missions, a global reflection on the opportunities offered by climate change is proposed.