WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Biovi: a research program for reducing chemical input in vine and wine

Biovi: a research program for reducing chemical input in vine and wine

Abstract

Decrease of chemical inputs during vine management and winemaking is of great importance from a political and societal point of view. In our ongoing project we propose alternative tools to chemicals in the vineyard and the cellar. We have compared a conventional vineyard protection strategy to an alternative strategy using copper and biocontrol products (Biocontrol) against downy and powdery mildews. Both strategies were compared regarding sanitary quality, berries and/or must enological parameters, and physical, biochemical and biological characteristics (berry surface observation, proteomic, metabolomic, volatilomic, metagenomic analyses). Musts obtained with both strategies were then used to assess compatibility with wine bioprotection. Bioprotection is an enological practice that consists of supplying microorganisms in order to reduce the use of sulfites during prefermentation winemaking steps. This practice was evaluated and the efficiency of non-Saccharomyces yeast was assessed (competition with indigenous yeast) as an alternative to sulfites requirement. The antioxidant capacity of wines obtained was also assessed. The four wines categories obtained from combination of Copper-Biocontrol/Conventional and Bioprotection/sulfites will then be compared by tasting and also by metabolomic and volatilomic analyses in order to study matrix changes and to identify putative biomarkers of each of these two bioprocesses.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Rémi Romanet, Vanessa David, Roullier-Gall, Manon Lebleux, Raphaëlle Tourdot-Maréchal, Régis Gougeon, Hervé Alexandre, Christelle Lemaitre-Guillier, Lucile Jacquens, Sophie Trouvelot, Elodie Noirot, Marie-Claire Héloir, Marielle Adrian, Maria Nikolantonaki

Presenting author

Rémi Romanet – UMR PAM, IUVV, Université Bourgogne-Franche-Comté

UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR 1347 Agroécologie, Inrae, Dijon, France, UMR 1347 Agroécologie, Inrae, Dijon, France, UMR 1347 Agroécologie, Inrae, Dijon, France, UMR 1347 Agroécologie, Inrae, Dijon, France, UMR 1347 Agroécologie, Inrae, Dijon, France, UMR 1347 Agroécologie, Inrae, Dijon, France

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Banques de données biologiques annuelles par terroir et optimisation des itinéraires culturaux

In addition to studies on the edaphic and landscape characteristics of the environment (Dolédec, 1995), the characterization of the physiology of the vine and of parasitism during its vegetative cycle represents an essential component of knowledge and management of the terroirs.

Monitoring small-scale alcoholic fermentations using a portable FTIR-ATR spectrometer and multivariate analysis

Although some wine production processes still rely on post-production evaluation and off-site laboratory analysis, the new winemaking industry is aware of a need for a better knowledge of the process to improve the properties of the final product. Thus, more and more wineries are interested in incorporating quality-by-design (QbD) strategies instead of postproduction testing because of the possibility to early detect deviations in fermentation or any other wine process. This would allow to detect unwanted situations and eventually to ‘readjust’ the process, thus minimizing rejects.

Physiological means to curb the enthusiasm of viruses from infecting grapevines  

The two most deadly viruses infecting and threatening the productivity of grapevines worldwide are leafroll and red blotch viruses. There is no cure for viral diseases other than roguing the symptomatic vines and replacing them with certified vines derived from clean, virus-tested stocks.
Given that phloem plays a central role in virus infection, this study aimed to purge the virus by girdling the phloem of leafroll-infected vines at different phenological stages of infected grapevines. Phloem-girdling was performed on canes at veraison to varying regions between the proximal and distal clusters.

Control of microbial development in wines elaborated by carbonic maceration

Carbonic Maceration (CM) winemaking is typically used in different European regions. But It is paradoxical that being a traditional processing system and widely used in many wineries, some of the phenomena that take place and the parameters that characterize them are barely known. In this vinification system the intact grape clusters are placed in a carbon dioxide (CO2) enriched medium, and they immediately change from a respiratory metabolism to an anaerobic fermentative metabolism called intracellular fermentation, which is carried out by grape enzymes. But some grapes located in the lower zone of the tank are crushed by the weight of the ones above and release must, which is fermented by yeasts.

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.