WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Biovi: a research program for reducing chemical input in vine and wine

Biovi: a research program for reducing chemical input in vine and wine

Abstract

Decrease of chemical inputs during vine management and winemaking is of great importance from a political and societal point of view. In our ongoing project we propose alternative tools to chemicals in the vineyard and the cellar. We have compared a conventional vineyard protection strategy to an alternative strategy using copper and biocontrol products (Biocontrol) against downy and powdery mildews. Both strategies were compared regarding sanitary quality, berries and/or must enological parameters, and physical, biochemical and biological characteristics (berry surface observation, proteomic, metabolomic, volatilomic, metagenomic analyses). Musts obtained with both strategies were then used to assess compatibility with wine bioprotection. Bioprotection is an enological practice that consists of supplying microorganisms in order to reduce the use of sulfites during prefermentation winemaking steps. This practice was evaluated and the efficiency of non-Saccharomyces yeast was assessed (competition with indigenous yeast) as an alternative to sulfites requirement. The antioxidant capacity of wines obtained was also assessed. The four wines categories obtained from combination of Copper-Biocontrol/Conventional and Bioprotection/sulfites will then be compared by tasting and also by metabolomic and volatilomic analyses in order to study matrix changes and to identify putative biomarkers of each of these two bioprocesses.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Rémi Romanet, Vanessa David, Roullier-Gall, Manon Lebleux, Raphaëlle Tourdot-Maréchal, Régis Gougeon, Hervé Alexandre, Christelle Lemaitre-Guillier, Lucile Jacquens, Sophie Trouvelot, Elodie Noirot, Marie-Claire Héloir, Marielle Adrian, Maria Nikolantonaki

Presenting author

Rémi Romanet – UMR PAM, IUVV, Université Bourgogne-Franche-Comté

UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR 1347 Agroécologie, Inrae, Dijon, France, UMR 1347 Agroécologie, Inrae, Dijon, France, UMR 1347 Agroécologie, Inrae, Dijon, France, UMR 1347 Agroécologie, Inrae, Dijon, France, UMR 1347 Agroécologie, Inrae, Dijon, France, UMR 1347 Agroécologie, Inrae, Dijon, France

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Conversion to mechanical management in vineyards maintains fruit

Current environmental, ecological and economic issues require a better vineyard production management. In fact, a poor use of fertilizing could lead to harmful impact on environment. Another issue concerns the cultures themselves which couldn’t use fertilizers efficiently, leading to a loss of income or too much expense for farmers. Presently, estimation of fertilization’s needs is realized by the laboratory analysis of leaves selected through a random sampling. The present study aims at optimizing fertilization’s management by using a map of biophysical parameters estimated from satellite images.

The Wine Active Compounds (WAC) conference 2022

The 5th edition of the International Conference Series on Wine Active Compounds (WAC) will be held from 29 June to 1 July 2022 (Dijon, France). All authors with accepted abstracts will have the possibility to publish either a short 4-pages article or a...

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

A phylogenomic study reveals the major dissemination routes of ‘Tempranillo Tinto’ in the Iberian Peninsula

‘Tempranillo Tinto’ is a black-berried Iberian cultivar that originated from a hybridization between cvs. ‘Benedicto’ and ‘Albillo Mayor’ [1]. Today, it is the third most widely grown wine grape cultivar worldwide with more than 200,000 hectares of vineyards mostly distributed along the Iberian Peninsula, where it is also known as ‘Cencibel’, ‘Tinta de Toro’, ‘Tinta Roriz’, and ‘Aragonez’, among other synonyms. Here, we quantified the intra-varietal genomic diversity in this cultivar through the study of 35 clones or ancient vines from seven different Iberian wine-making regions. A comparative analysis after Illumina whole-genome sequencing revealed the presence of 1,120 clonal single nucleotide variants (SNVs).

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.