WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Biovi: a research program for reducing chemical input in vine and wine

Biovi: a research program for reducing chemical input in vine and wine

Abstract

Decrease of chemical inputs during vine management and winemaking is of great importance from a political and societal point of view. In our ongoing project we propose alternative tools to chemicals in the vineyard and the cellar. We have compared a conventional vineyard protection strategy to an alternative strategy using copper and biocontrol products (Biocontrol) against downy and powdery mildews. Both strategies were compared regarding sanitary quality, berries and/or must enological parameters, and physical, biochemical and biological characteristics (berry surface observation, proteomic, metabolomic, volatilomic, metagenomic analyses). Musts obtained with both strategies were then used to assess compatibility with wine bioprotection. Bioprotection is an enological practice that consists of supplying microorganisms in order to reduce the use of sulfites during prefermentation winemaking steps. This practice was evaluated and the efficiency of non-Saccharomyces yeast was assessed (competition with indigenous yeast) as an alternative to sulfites requirement. The antioxidant capacity of wines obtained was also assessed. The four wines categories obtained from combination of Copper-Biocontrol/Conventional and Bioprotection/sulfites will then be compared by tasting and also by metabolomic and volatilomic analyses in order to study matrix changes and to identify putative biomarkers of each of these two bioprocesses.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Rémi Romanet, Vanessa David, Roullier-Gall, Manon Lebleux, Raphaëlle Tourdot-Maréchal, Régis Gougeon, Hervé Alexandre, Christelle Lemaitre-Guillier, Lucile Jacquens, Sophie Trouvelot, Elodie Noirot, Marie-Claire Héloir, Marielle Adrian, Maria Nikolantonaki

Presenting author

Rémi Romanet – UMR PAM, IUVV, Université Bourgogne-Franche-Comté

UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR PAM, IUVV, Université Bourgogne-Franche-Comté, UMR 1347 Agroécologie, Inrae, Dijon, France, UMR 1347 Agroécologie, Inrae, Dijon, France, UMR 1347 Agroécologie, Inrae, Dijon, France, UMR 1347 Agroécologie, Inrae, Dijon, France, UMR 1347 Agroécologie, Inrae, Dijon, France, UMR 1347 Agroécologie, Inrae, Dijon, France

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Aging in amphorae with different porosity for sustainable production of Nero d’Avola wine

In recent years, the use of amphorae in winemaking has become more frequent, symbolizing a return to the origins of vinification to broaden the availability of wines with different style.

Evaluation of wood starch content on bench grafting success rate in grapevine

Since the emergence of phylloxera, grafting has been the most used propagation method in viticulture. Despite all the improvement measures implemented in the nurseries, it is frequent that graft success rates vary depending on the nursery process and scion/rootstock combinations. The reasons behind this unsatisfactory behaviour are still unknown and can be diverse, although carbohydrate reserves might be hypothesised to be crucial, since callus, root, and new tissue formation will be built based on them. In order to identify the effect of carbohydrates on grafting success, nine combinations were established based on the starch content in grapevine scionwoods (cv. Tempranillo clone VN69) and rootstocks cuttings (110 Richter clone 237) used for grafting: Low (L), Medium (M), High (H).

Differential responses of red and white grape cultivars trained to a single trellis system – the VSP

Commercial grape production relies on training grapevine cultivars onto a variety of trellis systems. Training allows for well-lit leaves and clusters, maximizing fruit quality in addition to facilitating cultivation, harvesting, and diseases control. Although grapevines can be trained onto an infinite variety of trellis systems, most red and white cultivars are trained to the standard VSP (Vertical Shoot Positioning) system. However, red and white cultivars respond differently to VSP in fruit composition and growth characteristics, which are yet to be fully understood. Therefore, the objective of this study was to examine the influence of the VSP trellis system on fruit composition of three red, Cabernet Sauvignon, Merlot and Syrah, and three white, Chardonnay, Riesling, and Gewurztraminer cultivars grown under uniform growing conditions in the same vineyard. All cultivars were monitored for maturity and harvested at their physiologically maximum possible sugar concentration to compare various fruit quality attributes such as Brix, pH, TA, malic and tartaric acids, glucose and fructose, potassium, YAN, and phenolic compounds including total anthocyanins, anthocyanin profile, and tannins. A distinct pattern in fruit composition was observed in each cultivar. In regards to growth characteristics, Syrah grew vigorously with the highest cluster weight. Although all cultivars developed pyriform seeds, the seed size and weight varied among all cultivars. Also varied were mesocarp cell viability, brush morphology, and cane structure. This knowledge of the canopy architectural characteristics assessed by the widely employed fruit compositional attributes and growth characteristics will aid the growers in better management of the vines in varied situations.

Multidisciplinary strategies for understanding ill-defined concepts

Aims: The objective of the present work is to review strategies applied to decrypt multidimensional and ill-defined concepts employed by winemakers and to illustrate these strategies with recent applications.

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.