GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Abstract – Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011). The intraspecific variation in heat thresholds for grapevines impacts adaptation capacity (Parker et al 2011, Zapata et al 2017). Predicting phenology and the impact of temperature helps growers select later ripening varieties and clones most suitable for their location (Parker et al 2011). A broader understanding of variety sensitivity to climate change can inform planting and breeding decisions. Accurate estimations of ripening through phenological models can also guide viticultural decisions, especially under changing climate conditions (Zapata et al 2017). Models of warming indicate that increases in temperature are not uniform globally, and that warming has increased in the winegrowing areas of California and Western Europe more than South America and Australia during the past 50 years (Jones 2013). Even with our current understanding of varieties’ climate niches, only a few existing cultivars are late ripening enough to avoid the warming predicted to occur during maturation in future climate scenarios (Parker et al 2013, García de Cortázar-Atauri et al 2017).

Materials and Methods – This study builds on previous research by tracking over 130 varieties in a common garden over five years and models the response of the varieties through three main phenological stages: budburst, flowering, and veraison in a common garden, which allows for a more specific ecological study of each variety’s response to climate. We also compare traditional Vitis vinifera species with hybrids grown at the University of California, Davis, originally cultivated by Harold Olmo. We present sensitivity as the days shifted (standard error in days) over five years in response to temperature, and we include recommendations for future planting under several climate change scenarios.

Results – Our results suggest that future breeding and planting programs choose varieties with lower sensitivity to temperature changes, with later ripening patterns and high heat tolerance, such as hybrids cultivated by Harold Olmo, Italian, and French varieties. Future research will target potential varieties for successful marketing in California under future climate conditions, and potentially elucidate physiological drivers of phenological variation that have been artificially selected through grapevine cultivation.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Molly CLEMENS1, Andrew WALKER2, Elizabeth WOLKOVICH3

1 University of California Davis and San Diego State University Joint Doctoral Program in Ecology*
2 University of California Davis Department of Viticulture and Enology
3 University of British Columbia Department of Conservation and Forestry

Contact the author

Keywords

climate change, phenology, warming, grapevine

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Upscaling the integrated terroir zoning through digital soil mapping: a case study in the Designation of Origin Campo de Borja

homogeneous zones by intersecting several partial zonings of major factors that influence vineyard growth. Each of them follows specific process from their corresponding disciplines. Soil zoning specifically refers to a Soil Resource Inventory map that has traditionally been generated by conventional soil mapping methods. These methods have shortcomings in reaching fine cartographic and categorical details and involve significant expenses, which undermines their applicability. A new framework named Digital Soil Mapping has introduced quantitative models by statistical techniques to establish soil-landscape relationships and is able to provide intensive scale cartography.

In the present study, a microzoning at 1:10.000 scale is generated from an initial zoning, where the conventional soil map with polytaxic map units is replaced by a new one from digital techniques that disaggregates them. The comparison between the zonings considers a quantitative evaluation of capability for each Homogeneous Terroir Unit by means of the Viticultural Quality Index and its categorization based on its distribution by map. The spatial intersection of both maps gives rise to a confusion matrix in which the flows of class variations after the substitution are assessed.

The results show a five-fold increase in the number of Homogeneous Terroir Units identified and a larger differentiation among them, evidenced by a wider range in the capability index distribution. Both elements are accompanied by an increase in the detection of areas of higher potential within previously undervalued uniform zones.These features are a direct effect of the improvements brought by Digital Soil Mapping techniques and would verify the advantages of their implementation in the Integrated Terroir zoning. Eventually, such new highly detailed terroir units would benefit precision viticulture and sustainable management practices.

An evaluation of the physiological responses of young grapevines planted and maintained under water constraint 

The aim of this ongoing study is to evaluate the degree of adaptability of grapevine scion:rootstock combinations to different conditions of water constraint. Here we present results from the young vine development phase, using three scenarios of water constraint that were implemented from planting. The experimental vineyard was established in 2020 and the data presented will cover the 2021/2022 and 2022/2023 seasons. The experiment consisted of the cultivars Pinotage (PIN), Shiraz (SHI) and Cabernet Sauvignon (CAB), grafted on two rootstocks, Richter 110 (R110) and USVIT-8-7 (US87).

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

Multi-mineral wine profiling and Artificial Intelligence: Implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry

Multi-mineral wine profiling and artificial intelligence: implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry. Although their quantity is minimal, minerals are essential elements in the composition of every wine. Their presence is the result of complex interactions between factors such as soil, vines, climate, topography, and viticultural practices, all influenced by the terroir. Each stage of the winemaking process also contributes to shaping the unique mineral and taste profile of each wine, giving each cuvée its distinctive characteristics.

The socioclimatic dynamics and the table grape production during a long-drought: the case of Brazilian semiarid

In 2022, the area cultivated with grapes in Brazil counted 75 thousand ha. About 1/2 of the grape production is located in rio grande do sul state, in South Brazil. Nonetheless, the northeast region, especially the Sao Francisco River Valley (SFRV), is increasing its area and production, mainly pushed by table grapes. The states of bahia and pernambuco already respond for circa 1/3 of brazilian grape production.