GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Influence of trellis system and shoot density in yield and grape composition of a vineyard of Cabernet Sauvignon, in warm climate

Influence of trellis system and shoot density in yield and grape composition of a vineyard of Cabernet Sauvignon, in warm climate

Abstract

Context and purpose of the study – In vineyards grown in warm areas, it is usual that the stage of maturity of the grapes is fast and easily reach a high concentration of sugar and low acidity, but not a adequate phenolic maturation. The geometry of the trellis system and the shoot density can modify the microclimate of the cluster and, therefore, the maturation process.

Material and methods – In order to know whether, in warm areas, free or semi-free foliage systems are most appropriate to achieve a maturity more balanced than systems with guided foliage, such as the vertical shoot positioned, during 2013 and 2014 developed a test in a vineyard of Cabernet Sauvignon in Albacete (Spain). Comparing two trellis systems – vertical shoot positioned and sprawl -, each of them with three shoot densities – 35000, 55000 and 70000 shoots per hectare-. During maturation were determined the weight of the grape and the basic composition of the must (° Brix, pH and total acidity). Yield components and the grape phenolic components were determined at harvest.

Results – In both trellis systems the increased of crop load generated a proporcional increase in yield respect number of shoot, in addition to a delay in maturation, with lower concentrations of sugar and total phenols, and higher acidity. The vineyard in sprawl reached, usually, higher concentrations of sugar, but with equal or lower levels of acidity on vertical shoot positioned, which means a better sugar/acidity balance. The effect of the trellis system on the grape phenolic components was not consistent for the two years of study.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Emilio PEIRO1,2*, Pedro JUNQUERA1,2, José Ramón LISSARRAGUE1,2

1 Grupo de Investigación en Viticultura. E.T.S.I.A.A.B. Universidad Politécnica de Madrid. C/ Senda del Rey s/n, 28040. Madrid, Spain
2 Gestión Integral de Viticultura (GIVITI), C/ Alcántara nº 46, bajo drcha, 28006, Madrid, Spain

Contact the author

Keywords

trellis systems, shoot density, yield, berry composition

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Efforts to improve the New Zealand wine industry’s climate resilience and sustainability through grapevine improvement are limited by germplasm availability and a reliance on Sauvignon Blanc exports. To address this, we are working to generate a population of 12,000 individuals with unique genetic traits, from which to select future clones for major export varieties.

Sauvignon Blanc plantlets are being regenerated from embryogenic callus, using an approach designed to mobilise endogenous transposable elements as mutagens.

Hidden costs of wine: quantifying environmental externalities of organic and integrated management

Agriculture is one of the largest contributors to environmental pollution and causing significant impacts on human health, ecosystems, and resource availability.

Radiative and thermal effects on fruit ripening induced by differences in soil colour

One of the intrinsic parts of a vineyard “terroir” is soil type and one of the characteristics of the soil is it’s colour. This can differ widely from bright white, as for some calcareous soils, to red, as in “terra rossa” soils, or black, as in slate soils.

Life cycle assessment (LCA) to move towards more environmentally friendly winegrowing

As six on the nine planetary boundaries have already been crossed, putting our safe life on Earth at risk (Rockström et al., 2024) and agriculture is significantly responsible for it (Campbell et al., 2017), viticulture, faces the challenge of reducing its environmental impacts through fundamental changes to its practices.

Characterising the chemical typicality of regional Cabernet Sauvignon wines

Aim: To define the uniqueness of Australian Cabernet Sauvignon wines by evaluation of the chemical composition (volatile aroma and non-volatile constituents) that may drive regional typicity, and to correlate this with comprehensive sensory analysis data to identify the most important compounds driving relevant sensory attributes.