GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impacts of the projected changes in temperature under scenarios of climate change on vine phenology of three red varieties cultivated in Rioja (Spain)

Impacts of the projected changes in temperature under scenarios of climate change on vine phenology of three red varieties cultivated in Rioja (Spain)

Abstract

Context and purpose of the study – Grapevine is one of the crops that may suffer more negative impacts under climate change, due not only to changes in temperature but also due to water available. Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenology events and changes in the length of the growing season, which may have further effects on grape quality. The aim of this research was to analyze the changes in vine phenology of some red varieties (Tempranillo, Grenache and Carignan) cultivated in Rioja Oriental (Rioja DOCa), under different climate change scenarios.

Material and methods – The research includes the analysis of three plots located in the municipality of Viana (Navarra). Vine phenology referred to flowers separated (stage H) and veraison (stage M), Baillod and Baggiolini, 1993) was analyzed in the three plots for the period between 2005 and 2018. Climate characteristics were analyzed by considering the information recorded, for the same period in Viana meteorological station, which belongs to the Agencia Estatal de Meteorología (AEMET) of Spain. The thermal requirements to reach each of these phenological stages were evaluated and expressed as the GDD accumulated from DOI=60 (Parker et al, 2011). Temperature and precipitation changes under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5- were simulated based on an ensemble of models, using the MarkSim™ DSSAT weather file generator. Predictions for 2050 and 2070 for the changes on phenology were done, based on the projected changes in temperature and taking into account the observed thermal requirements during the period of analysis.

Results – An advance of the phenological stages was predicted, higher for veraison than for flowers separated, and higher for the varieties with later phenology (Carignan> Grenache > Tempranillo). Under the RCP4.5 emission scenario, the stage of flowers separated may be advanced about 5 days by 2050 and about 7 days, by 2070; and veraison may be advanced about 4 days by 2050 and about 7 days by 2070. Under the RCP8.5 emission scenario the advance could be up to 6 and 12 days for the stage of flowers separated and up to 6 and 15 days for veraison, respectively for the same time periods. This implies reaching maturity at the end of August, under high temperatures and with a risk of producing an imbalance between phenolic maturation and sugar and acid concentrations.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Maria Concepción RAMOS1*, Fernando MARTÍNEZ DE TODA2

1 Deparment of Environment and Soil Sciences-Agrotecnio, University of Lleida, Spain
2 Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja), Logroño, Spain

Contact the author

Keywords

climate change, Grenache, Carignan, Tempranillo, Rioja

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Climate change impacts water availability for agriculture, notably in semi-arid regions like South Africa, necessitating research on cultivar and rootstock adaptability to water constraints. To evaluate the performance (vegetative and reproductive) of different Chenin Blanc-rootstock combinations to the two water regimes, a field experiment was established in a model vineyard at Stellenbosch University, South Africa. Chenin Blanc vines grafted onto four different rootstocks (110Richter, 99Richter, 1103Paulsen and US 8-7) were planted in 2020. The vines are managed under two contrasting water conditions – dryland and irrigated (industry norm).

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

Characterization of different clone candidates of xinomavro according to their phenolic composition

Context and purpose of the study ‐ The aim of this study is the examination of wines of 9 different clones of a Greek grape variety Xinomavro, (ΧE1, X19, X22, X28, ΧE2 X30, X31, X35, X36, X37), with regards to their phenolic and anthocyanin content and chemical composition.

Phenolic acid characterization in new varieties descended from Monastrell.

Phenolic acids are phytochemicals that are expansively distributed in daily food intake. Phenolic acids are involved in various physiological activities, such as nutrient uptake, enzyme activity, protein synthesis, photosynthesis, and cytoskeleton structure in seeds, leaves, roots, and stems. Also exhibit antibacterial, antiviral, anticarcinogenic, anti-inflammatory, and vasodilatory activities due to their antioxidant property.

A sundial vineyard: impact of row density and orientation on cv. Cabernet-Sauvignon physiology and grape composition, insights to face a climate change scenario

An experimental vineyard with a radial array was planted in 2018, to provide valuable information on the relationship between orientation and planting density on plant physiology and cluster microclimate, and the consequent impacts on grape secondary metabolites, including aromas and polyphenols.