GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impacts of the projected changes in temperature under scenarios of climate change on vine phenology of three red varieties cultivated in Rioja (Spain)

Impacts of the projected changes in temperature under scenarios of climate change on vine phenology of three red varieties cultivated in Rioja (Spain)

Abstract

Context and purpose of the study – Grapevine is one of the crops that may suffer more negative impacts under climate change, due not only to changes in temperature but also due to water available. Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenology events and changes in the length of the growing season, which may have further effects on grape quality. The aim of this research was to analyze the changes in vine phenology of some red varieties (Tempranillo, Grenache and Carignan) cultivated in Rioja Oriental (Rioja DOCa), under different climate change scenarios.

Material and methods – The research includes the analysis of three plots located in the municipality of Viana (Navarra). Vine phenology referred to flowers separated (stage H) and veraison (stage M), Baillod and Baggiolini, 1993) was analyzed in the three plots for the period between 2005 and 2018. Climate characteristics were analyzed by considering the information recorded, for the same period in Viana meteorological station, which belongs to the Agencia Estatal de Meteorología (AEMET) of Spain. The thermal requirements to reach each of these phenological stages were evaluated and expressed as the GDD accumulated from DOI=60 (Parker et al, 2011). Temperature and precipitation changes under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5- were simulated based on an ensemble of models, using the MarkSim™ DSSAT weather file generator. Predictions for 2050 and 2070 for the changes on phenology were done, based on the projected changes in temperature and taking into account the observed thermal requirements during the period of analysis.

Results – An advance of the phenological stages was predicted, higher for veraison than for flowers separated, and higher for the varieties with later phenology (Carignan> Grenache > Tempranillo). Under the RCP4.5 emission scenario, the stage of flowers separated may be advanced about 5 days by 2050 and about 7 days, by 2070; and veraison may be advanced about 4 days by 2050 and about 7 days by 2070. Under the RCP8.5 emission scenario the advance could be up to 6 and 12 days for the stage of flowers separated and up to 6 and 15 days for veraison, respectively for the same time periods. This implies reaching maturity at the end of August, under high temperatures and with a risk of producing an imbalance between phenolic maturation and sugar and acid concentrations.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Maria Concepción RAMOS1*, Fernando MARTÍNEZ DE TODA2

1 Deparment of Environment and Soil Sciences-Agrotecnio, University of Lleida, Spain
2 Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja), Logroño, Spain

Contact the author

Keywords

climate change, Grenache, Carignan, Tempranillo, Rioja

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.

Closure permeability: a key parameter for modulating the aroma of monovarietal white wines during bottle ageing

Bottle aging is crucial for wine quality, influencing its chemical and sensory properties [1]. Ideally, a phase of qualitative ageing enhances sensory attributes before a decline in quality occurs. Understanding the impact of oenological variables on these phases is a key challenge in modern winemaking.

Aspetti legislativi di settore: e politiche comunitarie

Sulla base del tema assegnatomi è stata forte la tentazione di addentrarmi nel labirinto della regolamentazione comunitaria. Per buona pace degli intervenuti ho ritenuto, pero, poco utile una elencazione di numeri e riferimenti normativi che saranno brevemente riassunti in una tabella (TAB 1),

Biomass carbon and nitrogen input from cover crops in an irrigated vineyard in Okanagan Valley, Canada

The use of cover crops in vineyards has been encouraged by positive effects on wine grape yield and sensory attributes, and improved soil function. This study examined the efficacy of three alleyway and three undervine cover crop treatments in an organic vineyard in the semiarid Okanagan Valley, Canada in 2021.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).