GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impacts of the projected changes in temperature under scenarios of climate change on vine phenology of three red varieties cultivated in Rioja (Spain)

Impacts of the projected changes in temperature under scenarios of climate change on vine phenology of three red varieties cultivated in Rioja (Spain)

Abstract

Context and purpose of the study – Grapevine is one of the crops that may suffer more negative impacts under climate change, due not only to changes in temperature but also due to water available. Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenology events and changes in the length of the growing season, which may have further effects on grape quality. The aim of this research was to analyze the changes in vine phenology of some red varieties (Tempranillo, Grenache and Carignan) cultivated in Rioja Oriental (Rioja DOCa), under different climate change scenarios.

Material and methods – The research includes the analysis of three plots located in the municipality of Viana (Navarra). Vine phenology referred to flowers separated (stage H) and veraison (stage M), Baillod and Baggiolini, 1993) was analyzed in the three plots for the period between 2005 and 2018. Climate characteristics were analyzed by considering the information recorded, for the same period in Viana meteorological station, which belongs to the Agencia Estatal de Meteorología (AEMET) of Spain. The thermal requirements to reach each of these phenological stages were evaluated and expressed as the GDD accumulated from DOI=60 (Parker et al, 2011). Temperature and precipitation changes under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5- were simulated based on an ensemble of models, using the MarkSim™ DSSAT weather file generator. Predictions for 2050 and 2070 for the changes on phenology were done, based on the projected changes in temperature and taking into account the observed thermal requirements during the period of analysis.

Results – An advance of the phenological stages was predicted, higher for veraison than for flowers separated, and higher for the varieties with later phenology (Carignan> Grenache > Tempranillo). Under the RCP4.5 emission scenario, the stage of flowers separated may be advanced about 5 days by 2050 and about 7 days, by 2070; and veraison may be advanced about 4 days by 2050 and about 7 days by 2070. Under the RCP8.5 emission scenario the advance could be up to 6 and 12 days for the stage of flowers separated and up to 6 and 15 days for veraison, respectively for the same time periods. This implies reaching maturity at the end of August, under high temperatures and with a risk of producing an imbalance between phenolic maturation and sugar and acid concentrations.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Maria Concepción RAMOS1*, Fernando MARTÍNEZ DE TODA2

1 Deparment of Environment and Soil Sciences-Agrotecnio, University of Lleida, Spain
2 Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja), Logroño, Spain

Contact the author

Keywords

climate change, Grenache, Carignan, Tempranillo, Rioja

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Exploring changes in browning kinetics, color, and antioxidants due to dealcoholization of wine

The global consumer demand for low or non-alcoholic wine is growing steadily in recent years, driven by health concerns, religious beliefs, and personal taste preferences etc.. Consequently, the removal of alcohol from wine can significantly alter its chemical and sensory properties, including color, aroma, and taste, which make a significant challenge for consumer to accept these products. Ethanol plays a crucial role in various chemical reactions and interactions that contribute to the development of wine’s characteristics.

How sensory quality of wines can be accessed as a trait in MAS grape vine breeding

In the context of the global crises of global warming, biodiversity and pollution, current agricultural practices need to be reconsidered.

The complex response of Mediterranean viticultural systems to climate change: a case study from France and Australia

Climate change could put at risk viticultural areas situated at the hotter margins of Vitis vinifera growth climatic range. We focus on two such regions with a Mediterranean climate

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2 (approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2).

Phenology and bioclimate of grapevine varieties in the tropical region of the São Francisco Valley, Brazil

La région de la Vallée du São Francisco, situe à 9º S, est en train d’augmenter la production des vins fins les dernières années. La région présente climat du type tropical semi-aride (climat viticole à variabilité intra-annuelle selon le Système CCM Géoviticole : “très chaud, à nuits chaudes et à sécheresse forte à sub-humide” en fonction