GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impacts of the projected changes in temperature under scenarios of climate change on vine phenology of three red varieties cultivated in Rioja (Spain)

Impacts of the projected changes in temperature under scenarios of climate change on vine phenology of three red varieties cultivated in Rioja (Spain)

Abstract

Context and purpose of the study – Grapevine is one of the crops that may suffer more negative impacts under climate change, due not only to changes in temperature but also due to water available. Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenology events and changes in the length of the growing season, which may have further effects on grape quality. The aim of this research was to analyze the changes in vine phenology of some red varieties (Tempranillo, Grenache and Carignan) cultivated in Rioja Oriental (Rioja DOCa), under different climate change scenarios.

Material and methods – The research includes the analysis of three plots located in the municipality of Viana (Navarra). Vine phenology referred to flowers separated (stage H) and veraison (stage M), Baillod and Baggiolini, 1993) was analyzed in the three plots for the period between 2005 and 2018. Climate characteristics were analyzed by considering the information recorded, for the same period in Viana meteorological station, which belongs to the Agencia Estatal de Meteorología (AEMET) of Spain. The thermal requirements to reach each of these phenological stages were evaluated and expressed as the GDD accumulated from DOI=60 (Parker et al, 2011). Temperature and precipitation changes under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5- were simulated based on an ensemble of models, using the MarkSim™ DSSAT weather file generator. Predictions for 2050 and 2070 for the changes on phenology were done, based on the projected changes in temperature and taking into account the observed thermal requirements during the period of analysis.

Results – An advance of the phenological stages was predicted, higher for veraison than for flowers separated, and higher for the varieties with later phenology (Carignan> Grenache > Tempranillo). Under the RCP4.5 emission scenario, the stage of flowers separated may be advanced about 5 days by 2050 and about 7 days, by 2070; and veraison may be advanced about 4 days by 2050 and about 7 days by 2070. Under the RCP8.5 emission scenario the advance could be up to 6 and 12 days for the stage of flowers separated and up to 6 and 15 days for veraison, respectively for the same time periods. This implies reaching maturity at the end of August, under high temperatures and with a risk of producing an imbalance between phenolic maturation and sugar and acid concentrations.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Maria Concepción RAMOS1*, Fernando MARTÍNEZ DE TODA2

1 Deparment of Environment and Soil Sciences-Agrotecnio, University of Lleida, Spain
2 Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja), Logroño, Spain

Contact the author

Keywords

climate change, Grenache, Carignan, Tempranillo, Rioja

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Evaluation of glutathione content in four white varieties in the d.o. Ca. Rioja (Spain)

Glutathione is a tripeptide that is mainly found in reduced form in grapes. It generates during the maturation of the grape, increasing significantly after veraison [1].

Caractérisation du terroir en Espagne : méthodologie de l’évaluation et de la validation

In recent years, there has been a growing interest in characterizing the ecological environment of vineyard production, and the growing need to delimit and characterize with precision the different homogeneous viticultural units. This has allowed the development of new studies which have as their objective the Vineyard Zoning. The delimitation and characterization of wine-growing areas poses specific problems in Spain, not only linked to the specific characteristics of the territory, but also to the size, distribution and index of viticultural occupation in the designations of origin.

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

An effective approach to mitigating ochratoxin A (OTA) levels in wine with minor impact on wine quality

OTA occurrence in wine is well-documented, with higher levels typically found in red (< 0.01-7.63 μg/l), followed by rose (0.01-2.40 μg/l) and white wine (<0.01-1.72 μg/l). Incidence rates are nOTAble, with studies showing OTA present in 53% of 521 red wines, 69% of 98 rose, and 61% of 301 white wines analysed. In europe, wine is estimated to be the second source of OTA intake after cereals. Since 2006, the maximum allowable limit for OTA in wine is 2 μg/l, according to regulation (ec) no. 1881/2006.

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.