GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Mapping plant water status to indirectly assess variability in grape flavonoids and inform selective harvest decisions

Mapping plant water status to indirectly assess variability in grape flavonoids and inform selective harvest decisions

Abstract

Context and purpose of the study – Plant water stress affects grape (Vitis vinifera L.) berry composition and is variable in space due to variations in the physical environment at the growing site. Could we use water status maps as a sensitive tool to discriminate between harvest zones?

Material and methods – The study was carried out on 35experimental units placed on an equidistant grid within a 3.5 ha vineyard located in Sonoma County, Northern California. This drip irrigated vineyard was planted with Cabernet-Sauvignon on 110R, spur pruned and trained in two single high wires in a horizontally split canopy. The site was described through a digital elevation model, terrain analysis, NDVI and electrical resistivity maps. The natural variability of grapevine water stress was monitored by stem water potential (Ψstem), leaf gas exchange and δ13C of grape must at harvest. Geospatial analysis and clustering were used to differentiate the vineyard block into two management zones according to variability in water status.

Results – The two management zones were very distinct in water status and presented severe and moderate water stress. The average difference in Ψstem between the zones was of 0.2 MPa. Differences in stem water potential affected stomatal conductance, net carbon assimilation, and intrinsic water use efficiency that were different in all measurement dates. The two zones were selectively sampled at harvest for measurements of berry chemistry. Berry mass and yield per vine in the two water status zones were not different. A significant difference in total soluble solids (3.56 Brix) and in titratable acidity indicated a direct effect of water stress on ripening acceleration. Berry skin flavonol and anthocyanin composition and concentration were measured by C18 reversed-phased high-performance liquid chromatography (HPLC). Berry anthocyanins showed the highest differences between the two water stress zones. Dihydroxylated anthocyanins were more affected than the trihydroxylated ones, therefore, the ratio of the two forms increased. Flavonols were different in total amounts, but hydroxylation patterns were not affected. Proanthocyanidin isolates were characterized by acid catalysis in the presence of excess phloroglucinol followed by reversed-phase HPLC. Proanthocyanidins showed the least significant difference, although (+)-catechin terminal subunits were important predictors in a partial least square model used to summarize the multivariate relationships, predicting Ψstem or the management zone. The results highlight the importance of vineyard water status information for differential harvesting or direction to vineyard operators to modify irrigation management to equilibrate berry composition at harvest.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Luca BRILLANTE1*, Luis SANCHEZ2, Johann MARTINEZ-LUSHER3, Runze YU3, S. Kaan KURTURAL3

1 Dep. of Viticulture and Enology, California State University, Fresno, CA 93740. USA
2 E. J. Gallo Winery, 1541 Cummins Drive, Modesto, California 95358, United States
3 Department of Viticulture and Enology, University of California, Davis, CA 95616, USA

Contact the author

Keywords

selective harvest, spatial variability, management zones, water stress, anthocyanins, flavonols, proanthocyanidins

Tags

Citation

Related articles…

Environmental protection by means of (“Great”) vitiviniculture zonation

In the paper is discussed the first example of environmental protection, agreed in a wide term sense, by means of vitiviniculture zonations performed in Istria (Croatia) in the area of Butoniga lake

Managing Grapevine Powdery Mildew with Ultraviolet-C Light in Washington State

Germicidal ultraviolet-C (UV-C) light has shown promising results for suppression of several plant-pathogenic microorganims, including Erysiphe necator, which attacks grapevine. In Washington State the majority of winegrape production is in a semi-arid steppe environment, with historically low powdery mildew disease pressure, making it a promising area to deploy UV-C as a disease management tool. Trials focusing on UVC application timing and frequency will assist in developing regionally-appropriate application recommendations for eastern Washington State.

Unravelling Saccharomyces cerevisiae biosynthethic pathways of melatonin, serotonin and hydroxytyrosol  by UPLC-HRMS Isotopic labelling analysis

The main objective is to unravel the yeast biosynthetic pathways for MEL, SER and HT by using the respective labelled amino acids precursors: 15N2-L tryptophan and 13C-tyrosine.
The alcoholic fermentation experiments are performed with two different commercial
S cereviseae yeasts using synthetic must with the addition of the labelled compounds and the bioactive compounds were followed during the fermentation process. Six biological replicates of the fermentations were considered. MEL, SER and HT were analysed by UHPLC coupled to High Resolution Mass Spectrometry (HRMS). Accurate mass determination allowed to unequivocally distinguishing labelled and unlabelled compounds.

Estudio de fertilidad en variedades blancas en Castilla-la Mancha

La adaptación de nuevas variedades a zonas de cultivo fuera de su área de origen presenta múltiples interrogantes. En Castilla-La Mancha se está produciendo en los últimos años una gran inquietud por la diversificación y la reconversión de variedades.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.