GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Mapping plant water status to indirectly assess variability in grape flavonoids and inform selective harvest decisions

Mapping plant water status to indirectly assess variability in grape flavonoids and inform selective harvest decisions

Abstract

Context and purpose of the study – Plant water stress affects grape (Vitis vinifera L.) berry composition and is variable in space due to variations in the physical environment at the growing site. Could we use water status maps as a sensitive tool to discriminate between harvest zones?

Material and methods – The study was carried out on 35experimental units placed on an equidistant grid within a 3.5 ha vineyard located in Sonoma County, Northern California. This drip irrigated vineyard was planted with Cabernet-Sauvignon on 110R, spur pruned and trained in two single high wires in a horizontally split canopy. The site was described through a digital elevation model, terrain analysis, NDVI and electrical resistivity maps. The natural variability of grapevine water stress was monitored by stem water potential (Ψstem), leaf gas exchange and δ13C of grape must at harvest. Geospatial analysis and clustering were used to differentiate the vineyard block into two management zones according to variability in water status.

Results – The two management zones were very distinct in water status and presented severe and moderate water stress. The average difference in Ψstem between the zones was of 0.2 MPa. Differences in stem water potential affected stomatal conductance, net carbon assimilation, and intrinsic water use efficiency that were different in all measurement dates. The two zones were selectively sampled at harvest for measurements of berry chemistry. Berry mass and yield per vine in the two water status zones were not different. A significant difference in total soluble solids (3.56 Brix) and in titratable acidity indicated a direct effect of water stress on ripening acceleration. Berry skin flavonol and anthocyanin composition and concentration were measured by C18 reversed-phased high-performance liquid chromatography (HPLC). Berry anthocyanins showed the highest differences between the two water stress zones. Dihydroxylated anthocyanins were more affected than the trihydroxylated ones, therefore, the ratio of the two forms increased. Flavonols were different in total amounts, but hydroxylation patterns were not affected. Proanthocyanidin isolates were characterized by acid catalysis in the presence of excess phloroglucinol followed by reversed-phase HPLC. Proanthocyanidins showed the least significant difference, although (+)-catechin terminal subunits were important predictors in a partial least square model used to summarize the multivariate relationships, predicting Ψstem or the management zone. The results highlight the importance of vineyard water status information for differential harvesting or direction to vineyard operators to modify irrigation management to equilibrate berry composition at harvest.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Luca BRILLANTE1*, Luis SANCHEZ2, Johann MARTINEZ-LUSHER3, Runze YU3, S. Kaan KURTURAL3

1 Dep. of Viticulture and Enology, California State University, Fresno, CA 93740. USA
2 E. J. Gallo Winery, 1541 Cummins Drive, Modesto, California 95358, United States
3 Department of Viticulture and Enology, University of California, Davis, CA 95616, USA

Contact the author

Keywords

selective harvest, spatial variability, management zones, water stress, anthocyanins, flavonols, proanthocyanidins

Tags

Citation

Related articles…

Soil variability effects on vine rootzones and available water

Aim: The aim of this work is educating people about soil variability, vine rootzone depth and readily available water holding capacity. The concept of terroir is readily discussed in the wine industry but many people involved are unable to describe a soil profile and interpret its limitations that impact on vine growth, fruit quality and wine produced. This paper discusses soil physical characteristics important to vine root growth and readily available water holding capacity (RAW).

Carbohydrate dynamics in Shiraz to determine seasonal allocation to the perennial and annual parts in respect to climatic challenges

The dynamic changes of non-structural carbohydrates (NSC) in grapevines during the growing season is driven by phenological events and environmental factors.

Sensory profiles and European Consumer Preference related to Aroma and Phenolic Composition of Wines made from Fungus Resistant Grape Varieties

New grape varieties with several resistance loci towards powdery and downy mildew allows to significantly reduce the use of fungicides

Multi-mineral wine profiling and Artificial Intelligence: Implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry

Multi-mineral wine profiling and artificial intelligence: implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry. Although their quantity is minimal, minerals are essential elements in the composition of every wine. Their presence is the result of complex interactions between factors such as soil, vines, climate, topography, and viticultural practices, all influenced by the terroir. Each stage of the winemaking process also contributes to shaping the unique mineral and taste profile of each wine, giving each cuvée its distinctive characteristics.

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.