GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Mapping plant water status to indirectly assess variability in grape flavonoids and inform selective harvest decisions

Mapping plant water status to indirectly assess variability in grape flavonoids and inform selective harvest decisions

Abstract

Context and purpose of the study – Plant water stress affects grape (Vitis vinifera L.) berry composition and is variable in space due to variations in the physical environment at the growing site. Could we use water status maps as a sensitive tool to discriminate between harvest zones?

Material and methods – The study was carried out on 35experimental units placed on an equidistant grid within a 3.5 ha vineyard located in Sonoma County, Northern California. This drip irrigated vineyard was planted with Cabernet-Sauvignon on 110R, spur pruned and trained in two single high wires in a horizontally split canopy. The site was described through a digital elevation model, terrain analysis, NDVI and electrical resistivity maps. The natural variability of grapevine water stress was monitored by stem water potential (Ψstem), leaf gas exchange and δ13C of grape must at harvest. Geospatial analysis and clustering were used to differentiate the vineyard block into two management zones according to variability in water status.

Results – The two management zones were very distinct in water status and presented severe and moderate water stress. The average difference in Ψstem between the zones was of 0.2 MPa. Differences in stem water potential affected stomatal conductance, net carbon assimilation, and intrinsic water use efficiency that were different in all measurement dates. The two zones were selectively sampled at harvest for measurements of berry chemistry. Berry mass and yield per vine in the two water status zones were not different. A significant difference in total soluble solids (3.56 Brix) and in titratable acidity indicated a direct effect of water stress on ripening acceleration. Berry skin flavonol and anthocyanin composition and concentration were measured by C18 reversed-phased high-performance liquid chromatography (HPLC). Berry anthocyanins showed the highest differences between the two water stress zones. Dihydroxylated anthocyanins were more affected than the trihydroxylated ones, therefore, the ratio of the two forms increased. Flavonols were different in total amounts, but hydroxylation patterns were not affected. Proanthocyanidin isolates were characterized by acid catalysis in the presence of excess phloroglucinol followed by reversed-phase HPLC. Proanthocyanidins showed the least significant difference, although (+)-catechin terminal subunits were important predictors in a partial least square model used to summarize the multivariate relationships, predicting Ψstem or the management zone. The results highlight the importance of vineyard water status information for differential harvesting or direction to vineyard operators to modify irrigation management to equilibrate berry composition at harvest.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Luca BRILLANTE1*, Luis SANCHEZ2, Johann MARTINEZ-LUSHER3, Runze YU3, S. Kaan KURTURAL3

1 Dep. of Viticulture and Enology, California State University, Fresno, CA 93740. USA
2 E. J. Gallo Winery, 1541 Cummins Drive, Modesto, California 95358, United States
3 Department of Viticulture and Enology, University of California, Davis, CA 95616, USA

Contact the author

Keywords

selective harvest, spatial variability, management zones, water stress, anthocyanins, flavonols, proanthocyanidins

Tags

Citation

Related articles…

Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Aims: Due to climate change and the desire to decrease enological inputs (organic farming), the vineyard has to be modified and the selection of new resistant grape varieties as an alternative is researched intensively today. From January 2018, four new grape varieties that are resistant against mildew and odium have been added to the official

Climate change projections in serbian wine-growing regions

Changes in bioclimatic indices in wine-growing region of Serbia are analyzed under the RCP 8.5 IPCC scenario.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes.

Vineyard soil mapping to optimise wine quality: from ‘terroir’ characterisation to vineyard management

In this study, a soil mapping methodology at subplot level (scale 1:5000) for vineyard soils was developed. The aim of this mapping method was to establish mapping units, which could be used as basic units for ‘terroir’ characterisation and vineyard management (precision viticulture).