GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Modeling sugar accumulation dynamics of a wide variety of grape cultivars (Vitis vinifera L.)

Modeling sugar accumulation dynamics of a wide variety of grape cultivars (Vitis vinifera L.)

Abstract

Context and purpose of the study – Climate change is a major challenge in wine production. The IPCC (2014) projected that by the end of the 21st century average temperatures will increase by 1-3.7°C. Consequently, harvest dates could advance by approximately 30 days. A general observed trend is the increase in berry sugar content and decrease in organic acids, posing challenges for winegrowers. Variability among cultivars is a precious resource to adapt viticulture to a changing environment.The aim of this study is to model and compare the sugar accumulation dynamics for a wide variety of Vitis Vinifera (L.) grape cultivars. Determining ripening dynamics with the help of a single mathematical function will allow for cultivar classification and provide a means of determining suitability of grape cultivars under conditions of climate change, or in potentially new wine producing regions.

Material and methods – Berry samples were collected from 50 different Vitis Vinifera (L.) cultivars at four replicate locations within a common-garden randomized complete block design at the ISVV from 2012-2018. Samples were collected weekly between mid-veraison and maturity, from which berry fresh weight, reducing sugar, and other parameters were measured. The integrative indicator of water status (∂13C) was measured at maturity for every cultivar. A 3-parameter logistic function was fitted for sugar accumulation expressed in both concentration (g/L) and content (mg/berry).

Results – A logistic model was parameterized to the sugar accumulation data from 50 grape cultivars and ripening traits were extracted. Analysis of variance revealed there was a strong cultivar effect on the rate of sugar accumulation, while there was a strong year effect on the total sugar concentration accumulated. The length of the ripening period showed to be dependent on both year and cultivar. This research aids in determining the suitability of grape cultivars under changing climate conditions or in newly projected viticultural areas. The coefficients extracted from the model allow for the testing of other hypotheses and research questions. One of the questions under investigation, is whether the rate of sugar accumulation is influenced by water deficit (∂13C) and climatic variables (temperature, PAR, etc.).

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Bruno SUTER1, Agnès DESTRAC-IRVINE1, Mark GOWDY1, Zhanwu DAI1, Cornelis VAN LEEUWEN1

EGFV, Bordeaux Sciences Agro, INRA, ISVV, Univ. of Bordeaux, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

sugar accumulation dynamics, logistic function, ripening traits, water status, temperature, grapevine cultivars

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.