GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Soil and nutritional survey of Greek vineyards from the prefecture of Macedonia, Northern Greece, and from the island of Santorini

Soil and nutritional survey of Greek vineyards from the prefecture of Macedonia, Northern Greece, and from the island of Santorini

Abstract

Context and purpose of the study-Vitis vinifera L. is one of the most important cultures for the soil and climate conditions of Northern Greece and Santorini. However, very little information is provided with regard to its nutritional requirements and critical levels of nutrient deficiencies and toxicities. The aim of this study was to provide an integrated nutritional survey for the Greek conditions of wine and table varieties.

Materials and Methods- During the period 2012-2017 a high number of soil and leaf samples were collected (from Western and Central Macedonia, and from Santorini) and analyzed, to determine soil fertility and nutrition of Greek vineyards.

Results- Soil results showed that pH varied from approximately 4 to 8.30, organic matter from 0.36% to 7.80%, NO3-N from 0.4 to 81.6 ppm, P from 0.4 to 206 ppm, and exchangeable K and Mg varied from 54 to approximately 1000 ppm, and from 13 to 1608 ppm, respectively. DTPA extractable Fe, Zn, Mn and Cu fluctuated from approximately 1 to 200 ppm, 0.10 to 40 ppm, 0.78 to 60 ppm, and from 0.30 to 176 ppm, respectively. Finally, extractable B varied from 0.10 to approximately 16 ppm. With regard to foliar nutrient concentrations, wine and table varieties from Central Macedonia showed leaf N levels from 2.3 to 3.3% dw, and from 1.92 to 3.02% dw, respectively. Phosphorus varied from 0.15 to 0.47% dw, and K from 0.40 to 1.86% dw, and from 0.66 to 1.95% dw for wine and table varieties, respectively. Foliar Ca for wine and table varieties varied from 1.15 to 3.26% dw, and from 0.67 to 2.84% respectively, while Mg fluctuated from 0.12 to 0.44% dw, and from 0.14 to 0.61% dw, respectively. Leaf B fluctuated from 12 to 86 ppm, and from 18 to 106 ppm, respectively. Foliar Zn for wine varieties varied from 7 to 77 ppm, and for table varieties fluctuated from 9 to 34 ppm. Manganese varied from 23 to 1622 ppm, while Fe and Cu fluctuated from 39 to 179 ppm, and from 7 to 1057 ppm, respectively. Based on these data and on the classification provided in literature, it can be concluded that approximately 75% of the vineyards from Western Macedonia showed slight N deficiency, while 20-75% suffered from severe K deficiency. In addition, 30-50% and 35-80% of the vineyards of Kastoria showed B and Zn inadequacy, respectively. Finally, in most cases, very high Mn and Cu levels were found. It is believed that these data offer a useful insight and provide a valuable agronomic tool towards a sustainable nutrient management in the Greek vineyards.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Theocharis CHATZISTATHIS*, Eirini METAXA, Polyxeni PSOMA, Areti BOUNTLA, Vassilis ASCHONITIS, Panagiotis TZIACHRIS, Frantzis PAPADOPOULOS, Georgios STRIKOS

Institute of Soil and Water Resources, Leoforos Georgikis Scholis Avenue, Thessaloniki (Thermi), 57001, Greece

Contact the author

Keywords

Vitis vinifera L., nutrient deficiency, nutrient toxicity, organic matter, wine varieties, table varieties

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Zoning for drinking, tasting the territory place (“Great Zonation”): first considerations and methodology

Following the idea of « Grande Filiera » (GF) (Great chain), of « Grande Zonazione » (GZ) (Great Zonation), of “interpretation, estimation and valorisation of vineyards and wines landscape, of “qualities”(we have classified more than ninety), of quality economy.

Application of regenerative agriculture to viticulture: The REVINE project

Conventional viticulture improved the quality of production, but the economic costs can be unsustainable. Today, producers need to consider consumers’ demands for healthy, eco-friendly products. Institutions promote sustainable agriculture, with regenerative agriculture being the latest generation of methodologies focused on recovering losses and ensuring future sustainability. The revine project studies regenerative agricultural technology applied in mediterranean countries to provide precise indications for soil processing and effective vineyard treatments.

Histoire des Vitis depuis leurs origines possibles sur la Pangée jusqu’aux cépages cultivés : un exemple de résilience liée à la biodiversité des espèces

The first forms of life on earth were bacteria and single-celled blue-green algae. They evolved into land plants around 500 million years ago, developing mechanisms for surviving on land, such as roots, stems and leaves. This evolution also led them to coexist with other organisms, such as insects and animals, for pollination and seed dispersal, as well as to resist environmental factors such as drought and disease.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

Hydraulic redistribution and water movement mechanisms in grapevines

Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution.