GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Soil and nutritional survey of Greek vineyards from the prefecture of Macedonia, Northern Greece, and from the island of Santorini

Soil and nutritional survey of Greek vineyards from the prefecture of Macedonia, Northern Greece, and from the island of Santorini

Abstract

Context and purpose of the study-Vitis vinifera L. is one of the most important cultures for the soil and climate conditions of Northern Greece and Santorini. However, very little information is provided with regard to its nutritional requirements and critical levels of nutrient deficiencies and toxicities. The aim of this study was to provide an integrated nutritional survey for the Greek conditions of wine and table varieties.

Materials and Methods- During the period 2012-2017 a high number of soil and leaf samples were collected (from Western and Central Macedonia, and from Santorini) and analyzed, to determine soil fertility and nutrition of Greek vineyards.

Results- Soil results showed that pH varied from approximately 4 to 8.30, organic matter from 0.36% to 7.80%, NO3-N from 0.4 to 81.6 ppm, P from 0.4 to 206 ppm, and exchangeable K and Mg varied from 54 to approximately 1000 ppm, and from 13 to 1608 ppm, respectively. DTPA extractable Fe, Zn, Mn and Cu fluctuated from approximately 1 to 200 ppm, 0.10 to 40 ppm, 0.78 to 60 ppm, and from 0.30 to 176 ppm, respectively. Finally, extractable B varied from 0.10 to approximately 16 ppm. With regard to foliar nutrient concentrations, wine and table varieties from Central Macedonia showed leaf N levels from 2.3 to 3.3% dw, and from 1.92 to 3.02% dw, respectively. Phosphorus varied from 0.15 to 0.47% dw, and K from 0.40 to 1.86% dw, and from 0.66 to 1.95% dw for wine and table varieties, respectively. Foliar Ca for wine and table varieties varied from 1.15 to 3.26% dw, and from 0.67 to 2.84% respectively, while Mg fluctuated from 0.12 to 0.44% dw, and from 0.14 to 0.61% dw, respectively. Leaf B fluctuated from 12 to 86 ppm, and from 18 to 106 ppm, respectively. Foliar Zn for wine varieties varied from 7 to 77 ppm, and for table varieties fluctuated from 9 to 34 ppm. Manganese varied from 23 to 1622 ppm, while Fe and Cu fluctuated from 39 to 179 ppm, and from 7 to 1057 ppm, respectively. Based on these data and on the classification provided in literature, it can be concluded that approximately 75% of the vineyards from Western Macedonia showed slight N deficiency, while 20-75% suffered from severe K deficiency. In addition, 30-50% and 35-80% of the vineyards of Kastoria showed B and Zn inadequacy, respectively. Finally, in most cases, very high Mn and Cu levels were found. It is believed that these data offer a useful insight and provide a valuable agronomic tool towards a sustainable nutrient management in the Greek vineyards.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Theocharis CHATZISTATHIS*, Eirini METAXA, Polyxeni PSOMA, Areti BOUNTLA, Vassilis ASCHONITIS, Panagiotis TZIACHRIS, Frantzis PAPADOPOULOS, Georgios STRIKOS

Institute of Soil and Water Resources, Leoforos Georgikis Scholis Avenue, Thessaloniki (Thermi), 57001, Greece

Contact the author

Keywords

Vitis vinifera L., nutrient deficiency, nutrient toxicity, organic matter, wine varieties, table varieties

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Early ripening in cool climate viticulture varieties is mainly based on a mutation in ‘Pinot precocé noir’

For a long time, cool climate grapevine breeding has striven for early ripening cultivars to adapt to the former climate conditions.

Mobile device to induce heat-stress on grapevine berries

Studying heat stress response of grapevine berries in the field often relies on weather conditions during the growing season. We constructed a mobile heating device, able to induce controlled heat stress on grapes in vineyards. The heater consisted of six 150 W infrared lamps mounted in a profile frame. Heating power of the lamps could be controlled individually by a control unit consisting of a single board computer and six temperature sensors to reach a pre-set temperature. The heat energy applied to individual berries within a cluster decreases by the squared distance to the heat source, enabling the establishment of temperature profiles within individual clusters. These profiles can be measured by infrared thermography once a steady state has been reached. Radiant flux density received by a berry depending on the distance was calculated based on a view factor and measured lamp surface temperature and resulted to 665 Wm-2 at 7cm. Infrared thermography of the fruit surface was in good agreement with measurements conducted with a thermocouple inserted at epidermis level. In combination with infrared thermography, the presented device offers possibilities for a wide range of applications like phenotyping for heat tolerance in the field to proceed in the understanding of the complex response of plants to heat stress. Sunburn necrosis symptoms were artificially induced with the aid of the device for cv. Bacchus and cv. Sylvaner in the 2020 and 2021 growing season. Threshold temperatures for sunburn induction (LT5030min) were derived from temperature data of single berries and visual sunburn assessment, applying logistic regression. A comparison of threshold temperatures for the occurrence of sunburn necrosis confirmed the higher susceptibility of cv. Bacchus. The lower susceptibility of cv. Sylvaner did not seem to be related to its phenolic composition, rendering a thermoprotective role of berry phenolic compounds unlikely.

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines.

The Shield4Grape project to improve the sustainability of European viticulture

Grapevine (vitis spp.) Is one of the major and most economically important fruit crops worldwide. Unlike other cropping systems, viticulture has ancient historical connections with the development of human culture and with the socio-cultural background of grape-growing areas. The vitis genus is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.

La pianificazione del paesaggio agrario vitivinicolo del basso Monferrato

Monferrato is a sub region of Piedmont featuring an endless series of hills which have been moulded through the centuries by laborious farming. Vineyards have always been the protagonists of Monferrato landscape. Asti vineyards have been well-known since Roman times and Pliny the Elder mentions them.