GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Soil and nutritional survey of Greek vineyards from the prefecture of Macedonia, Northern Greece, and from the island of Santorini

Soil and nutritional survey of Greek vineyards from the prefecture of Macedonia, Northern Greece, and from the island of Santorini

Abstract

Context and purpose of the study-Vitis vinifera L. is one of the most important cultures for the soil and climate conditions of Northern Greece and Santorini. However, very little information is provided with regard to its nutritional requirements and critical levels of nutrient deficiencies and toxicities. The aim of this study was to provide an integrated nutritional survey for the Greek conditions of wine and table varieties.

Materials and Methods- During the period 2012-2017 a high number of soil and leaf samples were collected (from Western and Central Macedonia, and from Santorini) and analyzed, to determine soil fertility and nutrition of Greek vineyards.

Results- Soil results showed that pH varied from approximately 4 to 8.30, organic matter from 0.36% to 7.80%, NO3-N from 0.4 to 81.6 ppm, P from 0.4 to 206 ppm, and exchangeable K and Mg varied from 54 to approximately 1000 ppm, and from 13 to 1608 ppm, respectively. DTPA extractable Fe, Zn, Mn and Cu fluctuated from approximately 1 to 200 ppm, 0.10 to 40 ppm, 0.78 to 60 ppm, and from 0.30 to 176 ppm, respectively. Finally, extractable B varied from 0.10 to approximately 16 ppm. With regard to foliar nutrient concentrations, wine and table varieties from Central Macedonia showed leaf N levels from 2.3 to 3.3% dw, and from 1.92 to 3.02% dw, respectively. Phosphorus varied from 0.15 to 0.47% dw, and K from 0.40 to 1.86% dw, and from 0.66 to 1.95% dw for wine and table varieties, respectively. Foliar Ca for wine and table varieties varied from 1.15 to 3.26% dw, and from 0.67 to 2.84% respectively, while Mg fluctuated from 0.12 to 0.44% dw, and from 0.14 to 0.61% dw, respectively. Leaf B fluctuated from 12 to 86 ppm, and from 18 to 106 ppm, respectively. Foliar Zn for wine varieties varied from 7 to 77 ppm, and for table varieties fluctuated from 9 to 34 ppm. Manganese varied from 23 to 1622 ppm, while Fe and Cu fluctuated from 39 to 179 ppm, and from 7 to 1057 ppm, respectively. Based on these data and on the classification provided in literature, it can be concluded that approximately 75% of the vineyards from Western Macedonia showed slight N deficiency, while 20-75% suffered from severe K deficiency. In addition, 30-50% and 35-80% of the vineyards of Kastoria showed B and Zn inadequacy, respectively. Finally, in most cases, very high Mn and Cu levels were found. It is believed that these data offer a useful insight and provide a valuable agronomic tool towards a sustainable nutrient management in the Greek vineyards.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Theocharis CHATZISTATHIS*, Eirini METAXA, Polyxeni PSOMA, Areti BOUNTLA, Vassilis ASCHONITIS, Panagiotis TZIACHRIS, Frantzis PAPADOPOULOS, Georgios STRIKOS

Institute of Soil and Water Resources, Leoforos Georgikis Scholis Avenue, Thessaloniki (Thermi), 57001, Greece

Contact the author

Keywords

Vitis vinifera L., nutrient deficiency, nutrient toxicity, organic matter, wine varieties, table varieties

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Evaluation of intra-vineyard spatial and temporal variability of leaf area index using multispectral images obtained by satellite (Landsat 8, Sentinel-2) and unmanned aerial vehicle platforms

Estimation of vineyard leaf area index (LAI) is an important aspect for the winegrowers. However, tracking and monitoring are difficult tasks due to time constraints. Satellite and unmanned aerial vehicle (UAV) imaging have become a practical monitoring method for LAI. Nevertheless, for a proper LAI determination, the image’s spatial resolution is a key factor, since low-resolution images are incapable of distinguishing between adjacent vines due to the large area covered in each pixel, this leads to misinterpretation or generalisation of vineyard information.

Il sistema vigneto del Lago di Bolsena: caratterizzazione della produzione di Cannaiola di Marta

Il comprensorio del Lago di Bolsena (VT) è un territorio ad elevata vocazione vitivinicola in cui il paesaggio della vite storicamente persiste e caratterizza la fisionomia dei luoghi. Qui gli agroecosistemi viticoli possiedono una valenza ecologico-ambientale, storico-culturale ed economica di rilievo.

Overview on wine and health 32 years after the French paradox 

Phenolic compounds or polyphenols are the most abundant and ubiquitous secondary metabolites present in the plant kingdom with more than 8000 phenolic structures currently known. These compounds play an important role in plant growth and reproduction, providing protection against biotic and abiotic stress such as pathogen and insect attack, UV radiation and wounding. (poly)phenols are widely distributed in the human diet mainly in plant-derived food and beverages (fruits, vegetables, nuts, seeds, herbs, spices, tea and red wine).

Carbon footprint as a function of inter-annual climate variability in Uruguayan viticulture production systems

Climate change, driven by greenhouse gas (GHG) emissions, is one of humanity’s most significant environmental challenges.

Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

The present work contributes by developing a rapid sensory-directed methodology for the screening and selection of high quality wines with different sensory profiles Therefore, Verdejo and Tempranillo musts were fermented with 50 different yeasts each under controlled laboratory conditions. Resulting samples were firstly categorized according to five levels of quality by a panel of wine professionals (Sáenz-Navajas, Ballester et al. 2013). Higher quality samples were described by flash profiling by a semi-trained panel
(Valentin, Chollet et al. 2012) and most distinctive samples were screened by gas chromatography-olfactometry (GC-O) (López, Aznar et al. 2002).