GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effects of the addition of biochar on the chemical parameters of a vineyard soil in South Tirol, Italy

Effects of the addition of biochar on the chemical parameters of a vineyard soil in South Tirol, Italy

Abstract

Context and purpose of the study – The usage of pyrogenic carbon (or biochar) to change the chemical and physical properties of agricultural soil has been carried out since many centuries. In the South Tirol region in northern Italy wood gasification plants are used for mainly district heating purposes and generate a fair amount (1.300 t/year) of biochar with varying characteristics as byproducts. The ERDFfunded project «WoodUp» has as one of its goals the characterization and reutilization of the locally produced biochars for agricultural purposes and climate change mitigation. The Free University of Bolzano/Bozen as its lead partner is collaborating with the Laimburg Research Centre for the field trials in viticulture and fruit growing involving biochar from wood gasification plants. The changes of the chemical parameters in soil of a vineyard following the application of biochar has shown some interesting results.

Material and methods – In an existing vineyard of Müller Thurgau (planted 2007, on SO4) (Fig. 1) 5 different treatments plus a control with 4 repetitions each have been carried out. The treatments were: 3,9 kg/ m² dry matter compost (C), 2,5 kg/m² dry matter biochar (B1), 5 kg/m² dry matter biochar (B2), 2,5 kg/m² dry matter biochar plus 3,9 kg/ m² dry matter compost (B1C), 5 kg/m² dry matter biochar plus 3,9 kg/ m² dry matter compost (B2C) and the control which was left untreated (N). The biochar was incorporated between the rows with the use of a spade plough and a rotating harrow at approx. 30 cm depth. The soil samples were taken 2 months and 1 year after the incorporation of the biochar at 2 different dept ranges: 0 – 30 cm and 30 – 60 cm. For every repetition 4 single soil samples were taken and mixed together. The soils were analyzed to determine pH, total organic carbon, plant available phosphorus, potassium, magnesium, boron, manganese, copper and zinc.

Results – The soil analysis show that the incorporation of biochar affects a wide range of soil parameters such as an increase in pH ([1]Hass et al, 2012) and total organic carbon content and increases the plant availability of potassium, magnesium, boron, slightly increases phosphorous and zinc and interestingly decreases the manganese and copper availability in the vineyard soil. The changes appear to be stable in time and are present also in the deeper layers of the soil where the biochar has not been directly incorporated. These changes show a potential for ameliorating vineyard soils ([2]Schmid et al, 2014, [3]Genesio et al, 2015), in part by increasing the organic carbon content and with it the water holding capacity and by increasing the availability of nutrients such as boron, magnesium and potassium, while also rendering less available ([4]Park et al,2011) through adsorption heavy metals like copper and manganese often present in higher concentrations in vineyard soils due to plant protection products.

DOI:

Publication date: September 8, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Maximilian LÖSCH1*, Barbara RAIFER1, Aldo MATTEAZZI2

1 Institute for fruit Growing and Viticulture, Laimburg Research Centre, Laimburg 6, 39040 Auer, Italy
2 Institute for Agrochemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer, Italy

Contact the author

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The influence of terroir on the quality of wine of the Cahors A.O.C

Dans le but d’améliorer la qualité et la typicité des vins de l’Appellation d’0rigine Contrôlée CAHORS, une étude a été réalisée afin de mettre en évidence l’adéquation Cépage-Terroir- Qualité du vin.
Selon la méthodologie proposée par MORLAT et ASSELIN (1992), neuf unités terroirs ont été déterminées. Sur chacune, des parcelles de référence homogènes quant au matériel végétal Cot ou Malbec ( cépage principal de cette appellation greffé sur S04, et aux méthodes culturales, ont été suivies au niveau agronomique et œnologique (GARCIA et al., 1996).

Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Grape phenolic compounds are located in the internal layers of grape skins and seeds. They are synthesized via the phenyl-propanoid biosynthetic pathway which is modulated by both biotic and abiotic factors.

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes.

Analyse de la perception du terroir et de sa valorisation par les viticulteurs de l’Anjou

An integrated terroir characterization is currently realized in the French northern vineyard: “Anjou”. The concept of Basic Terroir Unit (B.T.U.) and its associated ground model “Rock, Alteration, Alterite” are used in this characterization. This work is coupled to a viticultural survey, based on parcels.

Inhibition of reductive characters in wine by cu-organic acids: predicting the duration of protection

Cu organic acid complexes efficiently bind hydrogen sulfide in wine and therefore prevent its accumulation and subsequent reductive off-flavour [1]. This fraction of Cu can also bind methanethiol