GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effects of the addition of biochar on the chemical parameters of a vineyard soil in South Tirol, Italy

Effects of the addition of biochar on the chemical parameters of a vineyard soil in South Tirol, Italy

Abstract

Context and purpose of the study – The usage of pyrogenic carbon (or biochar) to change the chemical and physical properties of agricultural soil has been carried out since many centuries. In the South Tirol region in northern Italy wood gasification plants are used for mainly district heating purposes and generate a fair amount (1.300 t/year) of biochar with varying characteristics as byproducts. The ERDFfunded project «WoodUp» has as one of its goals the characterization and reutilization of the locally produced biochars for agricultural purposes and climate change mitigation. The Free University of Bolzano/Bozen as its lead partner is collaborating with the Laimburg Research Centre for the field trials in viticulture and fruit growing involving biochar from wood gasification plants. The changes of the chemical parameters in soil of a vineyard following the application of biochar has shown some interesting results.

Material and methods – In an existing vineyard of Müller Thurgau (planted 2007, on SO4) (Fig. 1) 5 different treatments plus a control with 4 repetitions each have been carried out. The treatments were: 3,9 kg/ m² dry matter compost (C), 2,5 kg/m² dry matter biochar (B1), 5 kg/m² dry matter biochar (B2), 2,5 kg/m² dry matter biochar plus 3,9 kg/ m² dry matter compost (B1C), 5 kg/m² dry matter biochar plus 3,9 kg/ m² dry matter compost (B2C) and the control which was left untreated (N). The biochar was incorporated between the rows with the use of a spade plough and a rotating harrow at approx. 30 cm depth. The soil samples were taken 2 months and 1 year after the incorporation of the biochar at 2 different dept ranges: 0 – 30 cm and 30 – 60 cm. For every repetition 4 single soil samples were taken and mixed together. The soils were analyzed to determine pH, total organic carbon, plant available phosphorus, potassium, magnesium, boron, manganese, copper and zinc.

Results – The soil analysis show that the incorporation of biochar affects a wide range of soil parameters such as an increase in pH ([1]Hass et al, 2012) and total organic carbon content and increases the plant availability of potassium, magnesium, boron, slightly increases phosphorous and zinc and interestingly decreases the manganese and copper availability in the vineyard soil. The changes appear to be stable in time and are present also in the deeper layers of the soil where the biochar has not been directly incorporated. These changes show a potential for ameliorating vineyard soils ([2]Schmid et al, 2014, [3]Genesio et al, 2015), in part by increasing the organic carbon content and with it the water holding capacity and by increasing the availability of nutrients such as boron, magnesium and potassium, while also rendering less available ([4]Park et al,2011) through adsorption heavy metals like copper and manganese often present in higher concentrations in vineyard soils due to plant protection products.

DOI:

Publication date: September 8, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Maximilian LÖSCH1*, Barbara RAIFER1, Aldo MATTEAZZI2

1 Institute for fruit Growing and Viticulture, Laimburg Research Centre, Laimburg 6, 39040 Auer, Italy
2 Institute for Agrochemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer, Italy

Contact the author

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

The objective of the present work is to assess yeast effects on the development of wine varietal aroma throughout aging and on wine longevity.

Three independent experiments were carried out; two fermenting semi-synthetic musts fortified with polyphenols and aroma precursors extracted from Tempranillo (1) or Albariño (2) grapes and with synthetic precursors of polyfunctional mercaptans (PFMs), and a third in which a must, mixture of 6 different grape varieties was used. In all cases, fermentations were carried out by different Saccharomyces cerevisiae strains and one S. kudriavzevii, and the obtained wines were further submitted to anoxic accelerated aging to reproduce bottle aging. The volatile profile of the wines was analyzed using several chromatographic procedures, in order to provide a comprehensive evaluation of wine aroma. Aroma compounds analyzed included fermentation volatile metabolites, grape-derived aroma compounds including PFMs, and Strecker aldehydes (SA).

Results revealed that the effects of yeast on wine aroma throughout its self-life extend along three main axes:

1. A direct or indirect action on primary varietal aroma and on its evolution during wine
aging.

2. The direct production of SA during fermentation and/or their delayed formation by producing the required reagents (amino acids + dicarbonyls) for Strecker degradation
during anoxic aging.

3. Producing acids (leucidic, branched acids) precursors to fruity esters. More specifically, and leaving aside the infrequent de novo formation, the action of the different strains of yeast on primary varietal aroma takes four different forms:

1.- Speeding the hydrolysis of aroma precursors, which leads to early aroma formation without changing the amount of aroma formed. In the case of labile molecules, such as linalool, the enhancement of young wine aroma implies a short-living wine. 2.- Metabolizing the aroma precursor, reducing the amounts of aroma formed, which can be of advantage for negative aroma compounds, such as TDN or guaiacol; 3.- Transforming grape components into aroma precursors, increasing the amounts of aroma formed, as for ethyl cinnamate, leucidic acid or vinylphenols; 4.- Forming reactive species such as vinylphenols able to destroy varietal polyfunctional mercaptans.

Overall, it can be concluded that the yeast carrying alcoholic fermentation not only influences fermentative wine aroma but also affects to the wine varietal aroma, to its evolution during aging and to the development of oxidative off-odors

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

Viticultural Climatic Zoning and Digital Mapping of Rio Grande do Sul – Brazil, using Indices of the Géoviticulture MCC System

The State Rio Grande do Sul is the main producer of Brazilian fine wines, with four viticultural regions. The objective is the characterization of the viticultural climatic potential of the State (total surface of 281.749 km2). The methodology use the Géoviticulture Multicriteria Climatic Classification System (Géoviticulture MCC System), based on three climatic indices – Dryness Index (DI), Heliotermal Index (HI) and Cool Night Index (CI).

Chemical systems behind wine aroma perception: overview, genesis and evolution

This talk presents a revision of our knowledge and understanding of the role played by the different aroma chemicals in the positive aroma attributes of wine. A systematic approach to classifying the different aroma chemicals of wine is presented .

Haplotype-resolved genome assemblies of Chasselas and Ugni Blanc

Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous real-field genetic pool Vitis vinifera cultivars by combining high-fidelity long-read sequencing (HiFi) and high‐throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar.