GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effects of the addition of biochar on the chemical parameters of a vineyard soil in South Tirol, Italy

Effects of the addition of biochar on the chemical parameters of a vineyard soil in South Tirol, Italy

Abstract

Context and purpose of the study – The usage of pyrogenic carbon (or biochar) to change the chemical and physical properties of agricultural soil has been carried out since many centuries. In the South Tirol region in northern Italy wood gasification plants are used for mainly district heating purposes and generate a fair amount (1.300 t/year) of biochar with varying characteristics as byproducts. The ERDFfunded project «WoodUp» has as one of its goals the characterization and reutilization of the locally produced biochars for agricultural purposes and climate change mitigation. The Free University of Bolzano/Bozen as its lead partner is collaborating with the Laimburg Research Centre for the field trials in viticulture and fruit growing involving biochar from wood gasification plants. The changes of the chemical parameters in soil of a vineyard following the application of biochar has shown some interesting results.

Material and methods – In an existing vineyard of Müller Thurgau (planted 2007, on SO4) (Fig. 1) 5 different treatments plus a control with 4 repetitions each have been carried out. The treatments were: 3,9 kg/ m² dry matter compost (C), 2,5 kg/m² dry matter biochar (B1), 5 kg/m² dry matter biochar (B2), 2,5 kg/m² dry matter biochar plus 3,9 kg/ m² dry matter compost (B1C), 5 kg/m² dry matter biochar plus 3,9 kg/ m² dry matter compost (B2C) and the control which was left untreated (N). The biochar was incorporated between the rows with the use of a spade plough and a rotating harrow at approx. 30 cm depth. The soil samples were taken 2 months and 1 year after the incorporation of the biochar at 2 different dept ranges: 0 – 30 cm and 30 – 60 cm. For every repetition 4 single soil samples were taken and mixed together. The soils were analyzed to determine pH, total organic carbon, plant available phosphorus, potassium, magnesium, boron, manganese, copper and zinc.

Results – The soil analysis show that the incorporation of biochar affects a wide range of soil parameters such as an increase in pH ([1]Hass et al, 2012) and total organic carbon content and increases the plant availability of potassium, magnesium, boron, slightly increases phosphorous and zinc and interestingly decreases the manganese and copper availability in the vineyard soil. The changes appear to be stable in time and are present also in the deeper layers of the soil where the biochar has not been directly incorporated. These changes show a potential for ameliorating vineyard soils ([2]Schmid et al, 2014, [3]Genesio et al, 2015), in part by increasing the organic carbon content and with it the water holding capacity and by increasing the availability of nutrients such as boron, magnesium and potassium, while also rendering less available ([4]Park et al,2011) through adsorption heavy metals like copper and manganese often present in higher concentrations in vineyard soils due to plant protection products.

DOI:

Publication date: September 8, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Maximilian LÖSCH1*, Barbara RAIFER1, Aldo MATTEAZZI2

1 Institute for fruit Growing and Viticulture, Laimburg Research Centre, Laimburg 6, 39040 Auer, Italy
2 Institute for Agrochemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer, Italy

Contact the author

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

Phenolic extraction and mechanical properties of skins and seeds during maceration of four main italian red wine grape varieties

AIM: Red grape varieties are characterized by different phenolic contents (prominently tannins and anthocyanins) found in skins and seeds.

Innovative approaches in the evaluation of the spatial and temporal biodiversity of grape varieties from the Portuguese Bairrada appellation using LIMM-PCA: a study across five harvests

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard and wine ecosystems is required, as well as the varieties plasticity. Particular attention should be devoted to the spatial and temporal interactions between authorized or recommended varieties for a specific demarcated region and clime and vineyard conditions (such as soil type, orientation of the lines, age of the vine, density of planting, harvesting practices, among others).

On the relationship between climate and “terroir” at different spatial scales: the input of new methodological tools

Un grand nombre de travaux ont été consacrés à la mise en éyidence et à la quantification de l’effet du climat sur la qualité de la production viticole. IIs ont permis de caractériser les grands types de production à une large échelle géographique, et d’en évaluer les variations interannuelles au niveau des millésimes.