GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effects of the addition of biochar on the chemical parameters of a vineyard soil in South Tirol, Italy

Effects of the addition of biochar on the chemical parameters of a vineyard soil in South Tirol, Italy

Abstract

Context and purpose of the study – The usage of pyrogenic carbon (or biochar) to change the chemical and physical properties of agricultural soil has been carried out since many centuries. In the South Tirol region in northern Italy wood gasification plants are used for mainly district heating purposes and generate a fair amount (1.300 t/year) of biochar with varying characteristics as byproducts. The ERDFfunded project «WoodUp» has as one of its goals the characterization and reutilization of the locally produced biochars for agricultural purposes and climate change mitigation. The Free University of Bolzano/Bozen as its lead partner is collaborating with the Laimburg Research Centre for the field trials in viticulture and fruit growing involving biochar from wood gasification plants. The changes of the chemical parameters in soil of a vineyard following the application of biochar has shown some interesting results.

Material and methods – In an existing vineyard of Müller Thurgau (planted 2007, on SO4) (Fig. 1) 5 different treatments plus a control with 4 repetitions each have been carried out. The treatments were: 3,9 kg/ m² dry matter compost (C), 2,5 kg/m² dry matter biochar (B1), 5 kg/m² dry matter biochar (B2), 2,5 kg/m² dry matter biochar plus 3,9 kg/ m² dry matter compost (B1C), 5 kg/m² dry matter biochar plus 3,9 kg/ m² dry matter compost (B2C) and the control which was left untreated (N). The biochar was incorporated between the rows with the use of a spade plough and a rotating harrow at approx. 30 cm depth. The soil samples were taken 2 months and 1 year after the incorporation of the biochar at 2 different dept ranges: 0 – 30 cm and 30 – 60 cm. For every repetition 4 single soil samples were taken and mixed together. The soils were analyzed to determine pH, total organic carbon, plant available phosphorus, potassium, magnesium, boron, manganese, copper and zinc.

Results – The soil analysis show that the incorporation of biochar affects a wide range of soil parameters such as an increase in pH ([1]Hass et al, 2012) and total organic carbon content and increases the plant availability of potassium, magnesium, boron, slightly increases phosphorous and zinc and interestingly decreases the manganese and copper availability in the vineyard soil. The changes appear to be stable in time and are present also in the deeper layers of the soil where the biochar has not been directly incorporated. These changes show a potential for ameliorating vineyard soils ([2]Schmid et al, 2014, [3]Genesio et al, 2015), in part by increasing the organic carbon content and with it the water holding capacity and by increasing the availability of nutrients such as boron, magnesium and potassium, while also rendering less available ([4]Park et al,2011) through adsorption heavy metals like copper and manganese often present in higher concentrations in vineyard soils due to plant protection products.

DOI:

Publication date: September 8, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Maximilian LÖSCH1*, Barbara RAIFER1, Aldo MATTEAZZI2

1 Institute for fruit Growing and Viticulture, Laimburg Research Centre, Laimburg 6, 39040 Auer, Italy
2 Institute for Agrochemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer, Italy

Contact the author

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Elucidating contributions by vineyard site on volatile aroma characteristics of pinot noir wines

Correlations between vineyard site and wine have, historically, been limited due to lack of uniformity in scion and rootstock clone and lack of controlled pilot-scale winemaking conditions, particularly temperature

Effect of the commercial inoculum of arbuscular mycorrhiza in the establishment of a commercial vineyard of the cultivar “Manto negro

The favorable effect of symbiosis with arbuscular mycorrhizal fungi (AMF) has been known and studied since the 60s. Nowadays, many companies took the chance to start promoting and selling commercial inoculants of AMF, in order to be used as biofertilizers and encourage sustainable biological agriculture. However, the positive effect of these commercial biofertilizers on plant growth is not always demonstrated, especially under field conditions. In this study, we used a commercial inoculum on newly planted grapevines of a local cultivar grafted on a common rootstock R110. We followed the physiological status of vines, growth and productivity and functional biodiversity of soil bacteria during the first and second years of 20 inoculated with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseaeAMF at field planting time and 20 non-inoculated control plants. All the parameters measured showed a neutral to negative effect on plant growth and production. The inoculated plants always presented lower values of photosynthesis, growth and grape production, although in some cases the differences did not reach statistical significance. On the contrary, the inoculation supposed an increase of the bacterial functional diversity, although the differences were not statistically significant either. Several studies show that the effect of inoculation with AMF is context-dependent. The non-favorable effects are probably due to inoculation ineffectiveness under complex field conditions and/or that, under certain conditions, AMF presence may be a parasitic association. This puts into question the effectiveness of its application in the field. Therefore, it is recommended to only resort to this type of biofertilizer when the cultivation conditions require it (e.g., very low previous microbial diversity, foreseeable stress due to drought, salinity, or lack of nutrients) and not as a general fertilization practice.

Vertical cordon training system enhances yield and delays ripening in cv. Maturana Blanca

The growing interest in minority grape varieties is due to their potential for adaptation to global warming and their oenological capabilities. However, the cultivation of these varieties has often been limited due to their low economic efficiency. One such example is Maturana Blanca, a recently recovered and authorized minority grape variety in the DOCa Rioja region, known for its remarkable oenological potential but low productivity. This study aimed to increase the yield of Maturana Blanca by implementing the vertical cordon training system, which allowed for a higher number of buds per plant and an increased cluster count per vine.

Nuove tecnologie per la viticoltura in zone di alto valore ambientale

Gli autori presentano gli ultimi risultati delle ricerche dei DIAF sulla meccanizzazione delle operazioni colorali in zone di difficile accesso e transitabilità quali le aree marginali, i terreni terrazzati e altre realtà agricole caratterizzate da spazi estremamente ristretti (vivaismo, orticoltura, ecc.).

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.