GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effects of the addition of biochar on the chemical parameters of a vineyard soil in South Tirol, Italy

Effects of the addition of biochar on the chemical parameters of a vineyard soil in South Tirol, Italy

Abstract

Context and purpose of the study – The usage of pyrogenic carbon (or biochar) to change the chemical and physical properties of agricultural soil has been carried out since many centuries. In the South Tirol region in northern Italy wood gasification plants are used for mainly district heating purposes and generate a fair amount (1.300 t/year) of biochar with varying characteristics as byproducts. The ERDFfunded project «WoodUp» has as one of its goals the characterization and reutilization of the locally produced biochars for agricultural purposes and climate change mitigation. The Free University of Bolzano/Bozen as its lead partner is collaborating with the Laimburg Research Centre for the field trials in viticulture and fruit growing involving biochar from wood gasification plants. The changes of the chemical parameters in soil of a vineyard following the application of biochar has shown some interesting results.

Material and methods – In an existing vineyard of Müller Thurgau (planted 2007, on SO4) (Fig. 1) 5 different treatments plus a control with 4 repetitions each have been carried out. The treatments were: 3,9 kg/ m² dry matter compost (C), 2,5 kg/m² dry matter biochar (B1), 5 kg/m² dry matter biochar (B2), 2,5 kg/m² dry matter biochar plus 3,9 kg/ m² dry matter compost (B1C), 5 kg/m² dry matter biochar plus 3,9 kg/ m² dry matter compost (B2C) and the control which was left untreated (N). The biochar was incorporated between the rows with the use of a spade plough and a rotating harrow at approx. 30 cm depth. The soil samples were taken 2 months and 1 year after the incorporation of the biochar at 2 different dept ranges: 0 – 30 cm and 30 – 60 cm. For every repetition 4 single soil samples were taken and mixed together. The soils were analyzed to determine pH, total organic carbon, plant available phosphorus, potassium, magnesium, boron, manganese, copper and zinc.

Results – The soil analysis show that the incorporation of biochar affects a wide range of soil parameters such as an increase in pH ([1]Hass et al, 2012) and total organic carbon content and increases the plant availability of potassium, magnesium, boron, slightly increases phosphorous and zinc and interestingly decreases the manganese and copper availability in the vineyard soil. The changes appear to be stable in time and are present also in the deeper layers of the soil where the biochar has not been directly incorporated. These changes show a potential for ameliorating vineyard soils ([2]Schmid et al, 2014, [3]Genesio et al, 2015), in part by increasing the organic carbon content and with it the water holding capacity and by increasing the availability of nutrients such as boron, magnesium and potassium, while also rendering less available ([4]Park et al,2011) through adsorption heavy metals like copper and manganese often present in higher concentrations in vineyard soils due to plant protection products.

DOI:

Publication date: September 8, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Maximilian LÖSCH1*, Barbara RAIFER1, Aldo MATTEAZZI2

1 Institute for fruit Growing and Viticulture, Laimburg Research Centre, Laimburg 6, 39040 Auer, Italy
2 Institute for Agrochemistry and Food Quality, Laimburg Research Centre, Laimburg 6, 39040 Auer, Italy

Contact the author

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Evolution of grapeseed composition during maturation and characterization of its impact on wine compound using molecular networks

Usually the winemaker consider the grapeberry maturity as an actor of the wine quality. Grape seed are frequently used as a marker to assess the grape maturity. The first aim of this study is to obtain a better understanding of the impact of grape seed maturity on the grape seed and grape berry composition.

The use of remote sensing in South-African terroir research

The diversity of soil types in the Western Cape of South Africa leads to high levels of within-vineyard variability. Multispectral remote sensing has received a lot of attention recently in the South-African wine industry in an attempt to identify and deal with this variability.

Great highlands wine growing terroir: conditions and expressions

During 1982 started our wine growing project at the Puntalarga Hill, between 2500 and 2600 meters a.s.l.: 5.78 ºN, 72.98 ºW. Pinot noir, white Riesling and Riesling x Silvaner crossings are the most planted grapevines. Since 1984 research and development activities are carried out on pertinent subjects.

Application of nitrogen forms such as nitrate, urea, and amino acids effects on leaf and berry physiology and wine quality

Nitrogen (N) uptake by grapevine roots in forms like nitrate, ammonium, urea, or amino acids influences vegetative and generative growth, impacting grape quality and wine sensory profile. The study examined nitrogen’s influence on phenolic compounds in leaves, berries, and wine across different scales — hydroponics, soil culture, and vineyard trials. Nitrogen forms altered metabolite patterns in leaves and wine significantly, affecting aroma and flavor. Key nitrogen assimilation enzymes (NR, NiR, GS) in grapevine rootstocks responded to nitrogen forms and timing. Hydroponically grown rootstocks fertilized with various forms showed differences in enzyme expression and activity, suggesting rootstocks can assimilate amino acid glutamine (Gln).

A browser application for comprehensive 3-dimensional LC × LC × IM – MS data analysis to study grape and wine polyphenols

The analysis of structurally diverse proanthocyanidins in grapes and wine is challenging. Comprehensive two-dimensional liquid chromatography (LC×LC) and ion mobility spectrometry-mass spectrometry (IMS-MS) are increasingly used to address the challenges associated with the analysis of highly complex samples such as wine and grapes