GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effect of climate and soil on phenology and ripening of Vitis vinifera cv Touriga acional in the Dão region

Effect of climate and soil on phenology and ripening of Vitis vinifera cv Touriga acional in the Dão region

Abstract

Context and purpose of the study – “Terroir” has been acknowledged as an important factor in wine quality and style. It can be defined as an interaction between climate, soil, vine (cultivar, rootstock) and human factors such as viticultural and enological techniques. Soil and climate are the two components of the “Terroir” with an important role on the vine development and berries ripening. The present study is focused on the effects of the weather conditions and the soil characteristics on the phenological and berries ripening dynamics of the “Touriga Nacional” in Dão region.

Material and methods – This assay was carried out during 2017 and 2018 in four commercial vineyards at different places at Dão Region, centre of Portugal, with red grapevine variety Touriga Nacional. For each field were defined 3 plots were defined, and the observations were carried out in 10 plants per plot. Meteorological data was recorded at automatic stations localized next each vineyard. For the soil characterization, soil samples were taken in three layers until the 200 cm depths. Between budburst and veraison, the phenological stages were monitored using the E-L modify scale. During the ripening period, weekly, samples with 200 berries per plot were taken, determined their weights and juice volumes, and analysed their sugar contents, total acidity and pH. The anthocyanins accumulation was indirectly monitored, using the fluorescence optical sensor Multiplex, on six clusters per plot.

Results – The results showed similar characteristics of soils at the different vineyard, but different weather condition between places and years. The lag of the chronological evolution of the phenology and ripening between places and years was mainly due to the different thermal conditions of each place in each year.

DOI:

Publication date: September 8, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Pedro RODRIGUES1,2,3, Vanda PEDROSO4, Alexandre PINA1, Gonçalo LOURENÇO1, António CAMPOS1, Sérgio SANTOS1, Tiago SANTOS1, Sílvia LOPES 1, João GOUVEIA1, Carla HENRIQUES1,2, Ana MATOS1,2, Cristina AMARO DA COSTA1,2, Fernando GONÇALVES1,2,3

1 Instituto Politécnico de Viseu, Campus Politécnico, Viseu, Portugal
2 Centro de Estudos em Educação, Tecnologia e Saúde, Instituto Politécnico de Viseu, Viseu, Portugal
3 CERNAS, Centro de Estudos de Recursos Naturais, Ambiente e Sociedade, Instituto Politécnico de Viseu, Campus Politécnico, Viseu, Portugal
4 Centro Estudos Vitivinícola do Dão. Direção Regional de Agricultura e Pescas do Centro, Nelas, Portugal

Contact the author

Keywords

soil, climate, phenology, ripening, Touriga Nacional

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Il Cabernet di Atina dal 1850 al giorni nostri: un esempio di valorizzazione del territorio

In the province of Frosinone from 1850 they are cultivated in some zones wine grape of French origin like Merlot, Cabernet franc Cabernet sauvignon, Sirah, Pinot noir. The insertion of these varieties was the work of Pasquale Visocchi in the great company of family “Fratelli Visocchi Proprietari” (F. V.P.).

Using Landsat LST data to predict vineyard productivity anomalies: A case study in the Euganean Hills wine region, Italy

In the current scenario of climatic variability, even though the vine (Vitis vinifera) is a species generally considered very fertile, the process of bud differentiation is particularly influenced by the weather trend not only of the current year but also of the previous one.

Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Climate change impacts water availability for agriculture, notably in semi-arid regions like South Africa, necessitating research on cultivar and rootstock adaptability to water constraints. To evaluate the performance (vegetative and reproductive) of different Chenin Blanc-rootstock combinations to the two water regimes, a field experiment was established in a model vineyard at Stellenbosch University, South Africa. Chenin Blanc vines grafted onto four different rootstocks (110Richter, 99Richter, 1103Paulsen and US 8-7) were planted in 2020. The vines are managed under two contrasting water conditions – dryland and irrigated (industry norm).

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.

Effects of stress memory on grapevine resilience in response to recurrent drought and recovery events 

Plants have evolved different strategies to cope with environmental stresses and, although still debated, it was observed that they can remember past stress occurrence.
Anatomical and physiological adjustments have been observed in different grapevine cultivars after repeated drought exposure, however epigenetic, transcriptional and biochemical changes associated with drought-primed ecological memory have been poorly studied.
This work was conceived to test whether exposure to recurring events of mild drought could prime vines to endure severe drought stress. Particularly, we investigated whether the expected improved stress tolerance of Vitis vinifera cv Nebbiolo plants subjected over years to moderate and long-lasting water stress events (WS-primed) depended on molecular memory phenomena or on resetting of stress-induced signals.