GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effect of climate and soil on phenology and ripening of Vitis vinifera cv Touriga acional in the Dão region

Effect of climate and soil on phenology and ripening of Vitis vinifera cv Touriga acional in the Dão region

Abstract

Context and purpose of the study – “Terroir” has been acknowledged as an important factor in wine quality and style. It can be defined as an interaction between climate, soil, vine (cultivar, rootstock) and human factors such as viticultural and enological techniques. Soil and climate are the two components of the “Terroir” with an important role on the vine development and berries ripening. The present study is focused on the effects of the weather conditions and the soil characteristics on the phenological and berries ripening dynamics of the “Touriga Nacional” in Dão region.

Material and methods – This assay was carried out during 2017 and 2018 in four commercial vineyards at different places at Dão Region, centre of Portugal, with red grapevine variety Touriga Nacional. For each field were defined 3 plots were defined, and the observations were carried out in 10 plants per plot. Meteorological data was recorded at automatic stations localized next each vineyard. For the soil characterization, soil samples were taken in three layers until the 200 cm depths. Between budburst and veraison, the phenological stages were monitored using the E-L modify scale. During the ripening period, weekly, samples with 200 berries per plot were taken, determined their weights and juice volumes, and analysed their sugar contents, total acidity and pH. The anthocyanins accumulation was indirectly monitored, using the fluorescence optical sensor Multiplex, on six clusters per plot.

Results – The results showed similar characteristics of soils at the different vineyard, but different weather condition between places and years. The lag of the chronological evolution of the phenology and ripening between places and years was mainly due to the different thermal conditions of each place in each year.

DOI:

Publication date: September 8, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Pedro RODRIGUES1,2,3, Vanda PEDROSO4, Alexandre PINA1, Gonçalo LOURENÇO1, António CAMPOS1, Sérgio SANTOS1, Tiago SANTOS1, Sílvia LOPES 1, João GOUVEIA1, Carla HENRIQUES1,2, Ana MATOS1,2, Cristina AMARO DA COSTA1,2, Fernando GONÇALVES1,2,3

1 Instituto Politécnico de Viseu, Campus Politécnico, Viseu, Portugal
2 Centro de Estudos em Educação, Tecnologia e Saúde, Instituto Politécnico de Viseu, Viseu, Portugal
3 CERNAS, Centro de Estudos de Recursos Naturais, Ambiente e Sociedade, Instituto Politécnico de Viseu, Campus Politécnico, Viseu, Portugal
4 Centro Estudos Vitivinícola do Dão. Direção Regional de Agricultura e Pescas do Centro, Nelas, Portugal

Contact the author

Keywords

soil, climate, phenology, ripening, Touriga Nacional

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

Deep learning based models for grapevine phenology

the phenological evolution is a crucial aspect of grapevine growth and development. Accurate detection of phenological stages can improve vineyard management, leading to better crop yield and quality traits. However, traditional methods of phenological tracking such as on-site observations are time-consuming and labour-intensive. This work proposes a scalable data-driven method to automatically detect key phenological stages of grapevines using satellite data. Our approach applies to vast areas because it solely relies on open and satellite data having global coverage without requiring any in-field data from weather stations or other sensors making the approach extensible to other areas.

Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

‐Evaluation of xylem embolism is an important challenge in identifying drought tolerant genotypes within the context of climate change.

Traçability of main mineral elements on the chain “soil-leaf-must-wine” in relation to “terroir” and vintage in Loire Valley(France)

Dans le cadre de recherches sur la mise en évidence et le déterminisme d’un «effet terroir »un réseau de parcelles du cépage Cabernet Franc greffé sur S04, a été suivi de 1979 à 1990 en Val de Loire (A.O.C. Saumur-Champigny, Chinon et Bourgueil). Des analyses chimiques (N,P, K, Ca, Mg, Fe, Mn, Zn) ont été réalisées sur le sol, les feuilles au stade véraison, les moûts en cours de maturation et à la vendange et enfin sur le vin, pour 18 sites (répartis dans 12unités terroirs de base) et 7 millésimes différents.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.