GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The suitability for viticulture at varying altitudes: a study of grapevine ripening in the Italian Alps

The suitability for viticulture at varying altitudes: a study of grapevine ripening in the Italian Alps

Abstract

Context and purpose of the study – Planting vineyards in cooler climates has been used over recent years as a strategy to counter the climatic shifts caused by climate change. A move towards higher altitudes in hilly and mountainous wine regions may provide a solution to deleterious effects that increased ambient temperatures have on wine quality. Until now, the influences of higher altitudes and their climates, as well as their effect on vine growing cycles, still holds a lot of scientific uncertainty. The transnational EU-funded project REBECKA (Interreg V-A IT-AT: ITAT1002, duration: 2017-2019) has the objective to develop a regional valuation method to rate the suitability for viticulture in South Tyrol (Italy) and Carinthia (Austria). Preliminary surveys were performed regarding the effects of altitude on ripening performance of the cultivar Pinot Noir.

Materials and methods – Thirty South Tyrolean vineyard plots, ranging from 220 to 1145 m a.s.l., were used to examine the relationship between altitude and ripening performance of Pinot Noir. Physiological data were collected and maturity tests performed for the 2017 and 2018 vintages. Data collected over a 10-year period (2007-2017) from three ‘typical’ Pinot Noir vineyards (ranging from 355 to 610 m a.s.l.) were used to determine theoretical ‘reference’ ripening days (hereon referred to as ‘day of year,’ or ‘DOY’) for three different sugar ripeness values (16°, 17° and 18° Babo). A DOY for each of the three sugar ripeness values was also identified for each of the 30 vineyards. The DOY’s of the thirty vineyards were then compared to the ‘reference’ DOY’s for each of the three sugar ripeness values to determine if their ripening performances are characteristically ‘typical.’ Collected acidity parameters for all 30 vineyards were also examined relative to each DOY. To determine the influence of temperature on the maturation process at different altitudes, the respective growing degree day (GDD) was calculated for each sample date using the Winkler formula. Correlations were then used to explore the effect of GDD on sugar content and acidity.

Results – Between 300 and 800 m.a.s.l., the current study’s vineyards had the same advancement in ripening (total titratable acidity, malic acid, tartaric acid and pH) as that of a typical South Tyrolean Pinot Noir vineyard between 2007 and 2017. A strong linear relationship (R²=0,811; r=0,9) between the sugar/acid index and the respective GDD was found across all altitudes sampled. At higher altitudes, less GDD lead to a more rapid increase in sugar content and slower decrease in total acidity.

DOI:

Publication date: September 8, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Arno SCHMID1*, Stefania VENTURA1, Lukas EGARTER VIGL2, Simon TSCHOLL2, Erwin GARTNER3, Siegfried QUENDLER3, Franz MOSER4, Hermann KATZ4, Christof SANOLL1 and Barbara RAIFER1

1 Laimburg Research Centre, Laimburg 6, I-39040 Auer, Italy
2 EURAC Research, Drususallee 1, I-39100 Bozen, Italy
3 Obst- u. Weinbauzentrum Kärnten, Schulstraße 9, A-9433 St. Andrä, Austria
4 Joanneum Research, Leonhardstraße 59, A-8010 Graz, Austria

Contact the author

Keywords

climate change, viticulture, ripening performance, Pinot noir, GDD

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Mitigating the effects of climate change on berry composition by canopy management

Primary and secondary metabolites are major components of grape composition and their balances define wine typicality

Effects of rootstock and environment on the behaviour of autochthone grapevine varieties in the Douro region

In an experiment located at Quinta da Cavadinha, Sabrosa, Douro Region the behaviour of the varieties Touriga Nacional (TN), Tinta Barroca (TB), Touriga Franca

The complex response of Mediterranean viticultural systems to climate change: a case study from France and Australia

Climate change could put at risk viticultural areas situated at the hotter margins of Vitis vinifera growth climatic range. We focus on two such regions with a Mediterranean climate

Variety specific thresholds for plant-based indicators of vine nitrogen status

Aim: Several plant-based indicators of vine N status are reported in the literature. Among these, yeast assimilable nitrogen in grape must (YAN) and total N concentration of petiole and leaf blades are considered to be reliable indicators and so is the chlorophyll index, measured with a device called N-tester. The N-tester index is used to measure the intensity of the green colour of the leaf blade, and therefore to estimate its chlorophyll content.

The Gibberellic-Acid Insensitive gene Vvgai1 impacts both vegetative growth and organogenesis rate in Vitis labruscana

Context and purpose of the study. As other perennial crops grapevine is facing the challenges of climate changes. One of the major issues is global warming and variations of the water budget.