GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The suitability for viticulture at varying altitudes: a study of grapevine ripening in the Italian Alps

The suitability for viticulture at varying altitudes: a study of grapevine ripening in the Italian Alps

Abstract

Context and purpose of the study – Planting vineyards in cooler climates has been used over recent years as a strategy to counter the climatic shifts caused by climate change. A move towards higher altitudes in hilly and mountainous wine regions may provide a solution to deleterious effects that increased ambient temperatures have on wine quality. Until now, the influences of higher altitudes and their climates, as well as their effect on vine growing cycles, still holds a lot of scientific uncertainty. The transnational EU-funded project REBECKA (Interreg V-A IT-AT: ITAT1002, duration: 2017-2019) has the objective to develop a regional valuation method to rate the suitability for viticulture in South Tyrol (Italy) and Carinthia (Austria). Preliminary surveys were performed regarding the effects of altitude on ripening performance of the cultivar Pinot Noir.

Materials and methods – Thirty South Tyrolean vineyard plots, ranging from 220 to 1145 m a.s.l., were used to examine the relationship between altitude and ripening performance of Pinot Noir. Physiological data were collected and maturity tests performed for the 2017 and 2018 vintages. Data collected over a 10-year period (2007-2017) from three ‘typical’ Pinot Noir vineyards (ranging from 355 to 610 m a.s.l.) were used to determine theoretical ‘reference’ ripening days (hereon referred to as ‘day of year,’ or ‘DOY’) for three different sugar ripeness values (16°, 17° and 18° Babo). A DOY for each of the three sugar ripeness values was also identified for each of the 30 vineyards. The DOY’s of the thirty vineyards were then compared to the ‘reference’ DOY’s for each of the three sugar ripeness values to determine if their ripening performances are characteristically ‘typical.’ Collected acidity parameters for all 30 vineyards were also examined relative to each DOY. To determine the influence of temperature on the maturation process at different altitudes, the respective growing degree day (GDD) was calculated for each sample date using the Winkler formula. Correlations were then used to explore the effect of GDD on sugar content and acidity.

Results – Between 300 and 800 m.a.s.l., the current study’s vineyards had the same advancement in ripening (total titratable acidity, malic acid, tartaric acid and pH) as that of a typical South Tyrolean Pinot Noir vineyard between 2007 and 2017. A strong linear relationship (R²=0,811; r=0,9) between the sugar/acid index and the respective GDD was found across all altitudes sampled. At higher altitudes, less GDD lead to a more rapid increase in sugar content and slower decrease in total acidity.

DOI:

Publication date: September 8, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Arno SCHMID1*, Stefania VENTURA1, Lukas EGARTER VIGL2, Simon TSCHOLL2, Erwin GARTNER3, Siegfried QUENDLER3, Franz MOSER4, Hermann KATZ4, Christof SANOLL1 and Barbara RAIFER1

1 Laimburg Research Centre, Laimburg 6, I-39040 Auer, Italy
2 EURAC Research, Drususallee 1, I-39100 Bozen, Italy
3 Obst- u. Weinbauzentrum Kärnten, Schulstraße 9, A-9433 St. Andrä, Austria
4 Joanneum Research, Leonhardstraße 59, A-8010 Graz, Austria

Contact the author

Keywords

climate change, viticulture, ripening performance, Pinot noir, GDD

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Meso-scale future climate modeling (5 km resolution): application over French wine regions under the SRES A2 scenario (2041-2050)

In order to assess climate change at regional scales suitable to viticulture, the outputs of ARPEGE_Climat global model (resolution 0.5°) were downscaled using the Regional Atmospheric

Monferace a new “old style” for Grignolino wine, an autochthonous Italian variety: unity in diversity

Monferace project is born from an idea of 12 winegrowers willing to create a new “old style” Grignolino wine and inspired byancient winemaking techniques of this variety (1). Monferace wine is produced with 100% Grignolino grapes after 40 months of ageing, of which 24 in wooden barrels of different volumes. Grignolino is an autochthonous Italian variety cultivated in Piedmont (north-west Italy), recently indicated as a “nephew” of the famous Nebbiolo (2) and is used to produce three different DOC wines. The Monferace Grignolino is cultivated in the geographical area identified in the Aleramic Monferrato, defined by the Po and Tanaro rivers, in the heart of Piedmont and the produced wine is characterized by a high content of tannins, marked when young, that evolve over the years. Its color is generally slight ruby red and garnet red with orange highlights with ageing.

Tannin potential and molecular toasting in cooperage: a tool to modulate fruity expression of red wine

AIM: Oak wood play traditionally a huge role in making fine red wines. During wine maturation, barrel yields some of its constituents to the wine and leads to the improvement of its quality, contributing to richness and complexity [1].

Towards more coherent rules for alcohol labelling in the European Union

In its 2020 beating cancer plan, the european commission announced plans for mandatory warning signs for alcoholic beverages. However, no concrete legislative proposal has been put forward so far. Instead, ireland passed national legislation in 2023 that requires warning signs for all alcoholic beverages from 2026. Despite significant effects for the common market, the eu commission did not this challenge this law in the so-called tris notification procedure. We argue that the commission’s inaction is consistent with the case law of the european court of justice: in the absence of harmonized rules, member states have a large margin of discretion to enact national health measures.

Impact of grapevine rootstock genotypes on nitrogen status of the scion and phenolic composition in Pinot noir berries and wine

Context and purpose of the study. Nitrogen (N) limitation enhances the production of phenolic compounds in grapes due to the downregulation of the flavonoid biosynthesis pathway.