GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Abstract

Context and purpose of the study – Vine development, and hence management, depends on dynamic factors (climate, soil moisture, cultural practices etc.) whose impact can vary depending upon their temporal modalities (timing, duration, threshold, eventually trajectory and memory effects). Therefore, understanding the effect of the temporal variation of these factors on grapevine physiology would be of strategic benefit in viticulture, for example in establishing yield potential. Today many estates own data that can support temporal analyses, while the emergence of precision viticulture allows management at higher spatial and temporal resolutions. These data are a great opportunity to advance knowledge about the dynamics of grapevine physiology and production, and promote an improved precision of vineyard practices. The exploitation of these data needs analytical methods that fully explore time series data. However, current methods tend to only focus on a few key phenological stages or time steps. Such approaches do not fully address the potential information captured by continuous temporal measurements because they introduce limitations : i) they rely on choices of variables and timing, ii) they often require suppressing data or analysing only parts of a time series and iii) data correlation over time is not taken into account. A new approach is explored in this paper, using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS method). The BLiSS method overcomes the mentioned limitations and leads to a more complete and objective analysis of time series data. Based on the identification of climatic periods affecting yield, the objective of the study is to evaluate the potential of the BLiSS method.

Materials and method ‐ Minimum and maximum daily temperatures during the year preceding the harvest year were regressed against the number of clusters per vine using the BLiSS method on one block of a commercial vineyard in the Bordeaux region over 11 years. The reliability and pertinence of the BLiSS method to reveal already reported, ignored or underestimated temperature effects on the number of clusters per vine are tested by comparison with literature results.

Results ‐ The BLiSS method allowed the detection of periods when temperature influenced the number of clusters per vine during the year preceding the harvest year. Some of the detected periods of influence had already been reported in literature. However, the BLiSS outcomes suggested that some of those known periods may have a different duration or several effects, thus challenging actual knowledge. Finally, some new periods of influence were identified by the BLiSS method. These results confirmed the potential of the BLiSS method to undertake a fuller exploration of time series data in the case of climate influence on grape yield.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Cécile LAURENT (1,2,3), Meïli BARAGATTI (4), James TAYLOR (1), Bruno TISSEYRE (1), Aurélie METAY (2), Thibaut SCHOLASCH (3)

(1) ITAP, Univ. Montpellier, Montpellier SupAgro, Irstea, France
(2) SYSTEM, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRA, Montpellier SupAgro, France
(3) Fruition Sciences, Montpellier, France
(4) MISTEA, Univ Montpellier Montpellier SupAgro, INRA, France

Contact the author

Keywords

climate, functional analysis, temporal variability, cluster number

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

AIM: The composition and quality of wine are directly linked to microorganisms involved in the alcoholic fermentation. Several studies have been conducted on the impact of Saccharomyces cerevisiae on volatile compounds composition after fermentation. However, if different studies have dealt with combined sensory and volatiles analyses, few works have compared so far the impact of distinct yeast strains on the global metabolome of the wine.

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.

Optimizing protocol for a rapid and cost effective DNA isolation for Marker Assisted Selection pipeline

Grapevine is a plant that holds significant socioeconomic importance due to its production of grapes for fresh consumption, wines, and juices. However, climate changes and susceptibility to diseases pose a threat to the quality and yield of these products. The breeding of new genotypes that are resistant/tolerant to biotic and abiotic stresses is essential to overcome the impact of climate changes. In this regard, Marker-assisted selection (MAS), which uses DNA markers, is a crucial tool in breeding programs. The efficiency and economy of this method depend on finding rapid DNA isolation methods.

How geographical origin and vineyard management influence cv. Cabernet-Sauvignon in Chile – Machine learning based quality prediction

Aims: The aims of this study were to i) characterize the impact of geographical origin and viticulture treatments on Chilean Cabernet-Sauvignon, and ii) develop machine learning models to predict its quality. 

Using remotely sensed (UAV) and in situ field measurements to describe grapevine canopy characteristics

Row orientation and canopy management are essential for high quality grapevine production. Microclimatic conditions of the leaves and fruits can be influenced by the canopy geometry. Remote sensing is a very promising tool to describe vegetative growth and physiological behavior of vineyards. However, the correlation between remotely sensed data and in situ field measurements has been described scarcely in the scientific literature so far. The aim of the study was to correlate remotely sensed data obtained with Unmanned Aerial Vehicle (UAV) with in situ field measurements to describe canopy structure.