GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Behaviour of two training systems for mechanical pruning combined with different nitrogen fertilizations on cv. Colombard

Behaviour of two training systems for mechanical pruning combined with different nitrogen fertilizations on cv. Colombard

Abstract

Context and purpose of the study – Today winegrowers involved in mechanical winter pruning are applying this viticultural technique on two main training systems, the free cordon, appearing to be the more efficient, and the trellised vertical shoot positioning (VSP) system. The main reasons for maintaining the trellis are generally due to common habits in vineyard management, risk of wind damage for the shoots, or risk of decrease in photosynthesis potential. The aim of the study was to assess the effects of the two training systems on vine. In addition, different nitrogen fertilization levels were applied on the two systems to evaluate the best combination to achieve yield and grape quality.

Material and methods – Free cordon and spur pruned VSP system were compared during 3 vintages, from 2016 to 2018, on a rainfed cv. Colombard, planted in 2012 in Gascony vineyard, south-west of France. The trial was run on a young plot, planted in 2012, with a production goal of around 15 tons per hectare. Four strategies of nitrogen fertilization were applied on each system including soil mineral supplies (40N and 80N/ha) and foliar spraying (25N/ha) combined with green manure on each treatment (control). Total foliar area, yield, pruning weight, nitrogen and water status were controlled each year. Grapes composition at harvest and wine quality also allowed to compare the different treatments.

Results – The results showed different behavior of the vine according to the training systems. Total leaf area and yield were significantly lower for the free cordon system each of the tree years, regardless of nitrogen fertilizations. With the same leaf-fruit ratio, in 2017 and 2018, the free cordon grapes contained less sugar than VSP grapes. To explain some of these differences, discussion will take place around plot’s age and on plant development delay due to higher height of the supporting wire for free cordon system. Also, in our conditions, the rainfed free cordon development appeared to be very dependent on the height and period of shoot trimmings. The different fertilization strategies induced significant results on chlorophyll index of the leaves every year and on yeast assimilable nitrogen of grapes after the second year. The berries from the control treatment presented the lowest concentration of nitrogen and the foliar treatment the highest. But, the nitrogen fertilization supplies did not modify yield and pruning weight for both systems. The three-year treatments were not sufficient to induce major differences in these cases.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Thierry DUFOURCQ1,2, Elodie GASSIOLLE1, Frédéric LOPEZ1, Laure GONTIER2, Christophe GAVIGLIO2

1 IFV Sud-Ouest, Château de Mons, 32100 Caussens, France
2 IFV Sud-Ouest, V’innopôle, 81 310 Lisle Sur Tarn, France

Contact the author

Keywords

free cordon, Vertical Shoot Positioning, nitrogen fertilization, Colombard

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Caractérisation et valorisation des terroirs de l’appellation d’origine contrôlée Puisseguin-Saint-Emilion

Le terroir viticole, qui est la base de la délimitation des aires d’Appellation d’Origine Contrôlée, est une notion complexe dans laquelle sont en interaction la vigne, les facteurs naturels tels que le sol, le climat, ainsi que le facteur humain à travers les pratiques des viticulteurs. Le terroir conditionne la composition des raisins et ainsi la qualité et la typicité des vins qui en sont issus.

Chemical activation of ABA signaling in grapevine through ABA receptor agonists

Grapevine (Vitis vinifera) and its derived products, in terms of cultivated area and economic volume, constitute the most relevant fruit crop in the world (7.5 million cultivated hectares). In the current context of climate change, the wine sector faces unprecedented challenges to satisfy a growing demand for wines of greater quality through sustainable viticulture. Global warming threatens quality wine production in Mediterranean wine regions in particular. The increase in heatwaves and drought episodes accelerate the vine phenology and alter the ripening and composition of grapes and wine. Extreme abiotic stress episodes compromise grape production and plant survival, intensifying the pressure on the use of limited resources like water. Abscisic acid (ABA) is an important hormone in the ripening of certain fruits and in plant response to abiotic stress.

Transforming the grapevine world through new breeding techniques

Climate change and environmental degradation are existential threats to europe and the world. One of the most important objectives is to reduce by 2030 the use and the risk of chemical pesticides and fertilisers, reducing nutrient losses and increasing organic farming. Grapevine (vitis spp.) is one of the major and most economically important fruit crops worldwide. It is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.

Molecular binding mechanisms between grape seed polypeptides and wine anthocyanins by fluorescence spectroscopy and computational techniques

In recent years, proteins endogenous to grape have become of great interest to the wine industry because they represent a new alternative to other biopolymers subjected to more legal restrictions (i.e. animal origin and synthetics) that can be used in technological applications to modulate sensory attributes such as wine color and have a positive impact on wine quality.

Insight on Lugana flavor with a new LC-MS method for the detection of polyfunctional thiols

The analysis of polyfunctional thiols in wine is challenging due to their low abundance and instability within a complex matrix. However, volatile thiols are highly aroma-active, making their accurate quantification in wine at low concentrations crucial [1].