GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Behaviour of two training systems for mechanical pruning combined with different nitrogen fertilizations on cv. Colombard

Behaviour of two training systems for mechanical pruning combined with different nitrogen fertilizations on cv. Colombard

Abstract

Context and purpose of the study – Today winegrowers involved in mechanical winter pruning are applying this viticultural technique on two main training systems, the free cordon, appearing to be the more efficient, and the trellised vertical shoot positioning (VSP) system. The main reasons for maintaining the trellis are generally due to common habits in vineyard management, risk of wind damage for the shoots, or risk of decrease in photosynthesis potential. The aim of the study was to assess the effects of the two training systems on vine. In addition, different nitrogen fertilization levels were applied on the two systems to evaluate the best combination to achieve yield and grape quality.

Material and methods – Free cordon and spur pruned VSP system were compared during 3 vintages, from 2016 to 2018, on a rainfed cv. Colombard, planted in 2012 in Gascony vineyard, south-west of France. The trial was run on a young plot, planted in 2012, with a production goal of around 15 tons per hectare. Four strategies of nitrogen fertilization were applied on each system including soil mineral supplies (40N and 80N/ha) and foliar spraying (25N/ha) combined with green manure on each treatment (control). Total foliar area, yield, pruning weight, nitrogen and water status were controlled each year. Grapes composition at harvest and wine quality also allowed to compare the different treatments.

Results – The results showed different behavior of the vine according to the training systems. Total leaf area and yield were significantly lower for the free cordon system each of the tree years, regardless of nitrogen fertilizations. With the same leaf-fruit ratio, in 2017 and 2018, the free cordon grapes contained less sugar than VSP grapes. To explain some of these differences, discussion will take place around plot’s age and on plant development delay due to higher height of the supporting wire for free cordon system. Also, in our conditions, the rainfed free cordon development appeared to be very dependent on the height and period of shoot trimmings. The different fertilization strategies induced significant results on chlorophyll index of the leaves every year and on yeast assimilable nitrogen of grapes after the second year. The berries from the control treatment presented the lowest concentration of nitrogen and the foliar treatment the highest. But, the nitrogen fertilization supplies did not modify yield and pruning weight for both systems. The three-year treatments were not sufficient to induce major differences in these cases.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Thierry DUFOURCQ1,2, Elodie GASSIOLLE1, Frédéric LOPEZ1, Laure GONTIER2, Christophe GAVIGLIO2

1 IFV Sud-Ouest, Château de Mons, 32100 Caussens, France
2 IFV Sud-Ouest, V’innopôle, 81 310 Lisle Sur Tarn, France

Contact the author

Keywords

free cordon, Vertical Shoot Positioning, nitrogen fertilization, Colombard

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Are Farm to fork strategy goals reasonable and achievable? State of the art of Península de Setubal’s winegrowers

The European Union’s “farm to fork” strategy sets out several objectives to be achieved by farmers, who, among others, relate to increasing biodiversity, protecting soils and reducing the use of pesticides. At a time when the amendments to the national plans of Sustainable Use of pesticides are being discussed, it is important to understand what the Setúbal Peninsula region status is.

Innovative approach to energy efficiency benchmarking in the wine sector

The wine industry, a key sector for the European Union’s economy, exhibits significant energy consumption, amounting to approximately 1,750 million kWh annually within this geographic context, with major contributions from Italy, France, Spain, and Portugal (Fuentes Pila et al., 2015).

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

Climate change – variety change?

In Franconia, the northern part of Bavaria in Germany, climate change, visible in earlier bud break, advanced flowering and earlier grape maturity, leads to a decrease of traditionally cultivated early ripening aromatic white wine varieties as Mueller-Thurgau (30 % of the wine growing area) and Bacchus (12 %). With the predicted rise of temperature in all European wine regions the conditions for white wine grape varieties will decline and the grapes themselves will lose a part of their aromatic and fruity expression. Variety change towards the cultivation of later ripening white wine varieties is a very expensive and long-term process, and must be accompanied by special marketing efforts.