GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Behaviour of two training systems for mechanical pruning combined with different nitrogen fertilizations on cv. Colombard

Behaviour of two training systems for mechanical pruning combined with different nitrogen fertilizations on cv. Colombard

Abstract

Context and purpose of the study – Today winegrowers involved in mechanical winter pruning are applying this viticultural technique on two main training systems, the free cordon, appearing to be the more efficient, and the trellised vertical shoot positioning (VSP) system. The main reasons for maintaining the trellis are generally due to common habits in vineyard management, risk of wind damage for the shoots, or risk of decrease in photosynthesis potential. The aim of the study was to assess the effects of the two training systems on vine. In addition, different nitrogen fertilization levels were applied on the two systems to evaluate the best combination to achieve yield and grape quality.

Material and methods – Free cordon and spur pruned VSP system were compared during 3 vintages, from 2016 to 2018, on a rainfed cv. Colombard, planted in 2012 in Gascony vineyard, south-west of France. The trial was run on a young plot, planted in 2012, with a production goal of around 15 tons per hectare. Four strategies of nitrogen fertilization were applied on each system including soil mineral supplies (40N and 80N/ha) and foliar spraying (25N/ha) combined with green manure on each treatment (control). Total foliar area, yield, pruning weight, nitrogen and water status were controlled each year. Grapes composition at harvest and wine quality also allowed to compare the different treatments.

Results – The results showed different behavior of the vine according to the training systems. Total leaf area and yield were significantly lower for the free cordon system each of the tree years, regardless of nitrogen fertilizations. With the same leaf-fruit ratio, in 2017 and 2018, the free cordon grapes contained less sugar than VSP grapes. To explain some of these differences, discussion will take place around plot’s age and on plant development delay due to higher height of the supporting wire for free cordon system. Also, in our conditions, the rainfed free cordon development appeared to be very dependent on the height and period of shoot trimmings. The different fertilization strategies induced significant results on chlorophyll index of the leaves every year and on yeast assimilable nitrogen of grapes after the second year. The berries from the control treatment presented the lowest concentration of nitrogen and the foliar treatment the highest. But, the nitrogen fertilization supplies did not modify yield and pruning weight for both systems. The three-year treatments were not sufficient to induce major differences in these cases.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Thierry DUFOURCQ1,2, Elodie GASSIOLLE1, Frédéric LOPEZ1, Laure GONTIER2, Christophe GAVIGLIO2

1 IFV Sud-Ouest, Château de Mons, 32100 Caussens, France
2 IFV Sud-Ouest, V’innopôle, 81 310 Lisle Sur Tarn, France

Contact the author

Keywords

free cordon, Vertical Shoot Positioning, nitrogen fertilization, Colombard

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Regionality in Australian Shiraz: Sensory profiles of wines from six regions and their associations with chemical, geographical and climatic elements

Aim: Regional characters relating to Shiraz in Australia are not well documented. This study aimed to characterize the sensory, chemical and climate profiles of wines from various Australian Shiraz producing regions. 

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.

Relevance of an immunoassay test for rapid detection of Botrytis cinerea in ‘Ugni blanc’ musts and wines

A new immunoassay kit, called Botrytis Lateral Flow Device has been tested to detect Botrytis cinerea on musts and wines. The comparison of the immunoassay result with the quantitative analysis of usual markers (gluconic acid, sugars and polyols) showed the relevance of this innovative tool.

A meta-analysis of the ecological impact of viticultural practices on soil biodiversity

Viticulture is facing two major challenges – climate change and agroecological transition. The soil plays a pivotal role in these transition processes. Therefore, soil quality and adequate soil management are key levers for an ecologically and economically sustainable viticulture. Over the last 15 years, numerous studies evidenced strong effects of viticultural practices on the soil physical, chemical and biological quality. However, to date a global analysis providing a comprehensive overview of the ecological impacts of viticultural practices on soil biological quality is missing.