OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

Abstract

The wine aroma is constituted by hundred of volatile chemical compounds that depend on many viticultural and oenological factors. One of the most important factors that will unequivocally affect the final wine pro-perties is the grape maturity level. Grape ripening is an extremely complex process, in which the metabolites and precursors concentrations change significantly with time. However, the knowledge of how grape ripe-ning affects wine aroma composition is still quite limited. Nowadays, wineries measure parameters such as sugar, pH, acidity and colorimetric tests to evaluate the degree of maturity of the vintage and decide the harvest data, but these analysis do not take into consideration the aromatic potential of the grape. The objective of the present work is to understand the differences in the aroma chemical profile of Moristel wines from different vineyards harvested at different time points. So, three different vineyards of Moris-tel grape variety in D.O. Somontano were selected, in two consecutive vintages: two in 2016 and one in 2017. Each block was harvested at different time points followed by microvinifications applying the same fermentation protocol. All of them have been elaborated in triplicated. This was assessed by the analysis of major aroma compounds (GC-FID), trace aroma compounds (GC-MS), methoxypyrazines (TD-GCxGC-MS), polyfunctionalmercaptans (SPE GC-MS), volatile sulfur compounds (BR-VSCs) and total acetaldehyde (HPLC-UV/VIS). The most important result is that the grapes harvested at 42 days postveraison, that is the “green” ones, pro-duce wines with high concentration of acetaldehyde and low IPT. Hence, low concentration of polyphenols facilitate the accumulation of this compound. Another reason for these acetaldehyde high concentrations could be problems associated with the lack of reduction factors (NADH or NADPH). This fact is also corroborated with the decreases of branched acid / fusel alcohol and branched ester/fu-sel alcohol ratios during the maturity. These facts can have very important sensory repercussion, the acetaldehyde and fusel alcohol are components of aroma buffer.

Finally, the evolution of certain maturity markers (c-3-hexenol, Y-nonalactona, rotundone) has been also observed, but these target compounds, by themselves, do not seem to have great sensory relevance in the final wines. This study has help to elucidate how grape maturity state contributes to final Moristel wine aroma profile and possible self-life.

Acknowledgements

This work has been funded by the Spanish MINECO (Project AGL2014-59840, RTC 2015-3379 and RTC-2016-4935-2) and partly co-funded by the European Union (FEDER). I.A. has re-ceived a grant from the Spanish FPU programs. Funding from D.G.A. (T53) and Fondo Social Europeo is acknowledged.

DOI:

Publication date: June 9, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ignacio Arias, Sara Ferrero-del-Teso, María Pilar Sáenz-Navajas, Purificación Fernández-Zurbano,Blanca Lacau, Jesús Astraín, Cristina Barónv Vicente Ferreira, Ana Escudero

Instituto de Ciencias de la Vid y el Vino (ICVV) (Universidad de La Rioja-CSIC-Gobierno de La Rioja), Carre-tera de Burgos Km. 6, Finca La Grajera, 26007 Logroño, La Rioja, Spain
Laboratorio de análisis del aroma y enología (LAAE). Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA). Calle Pedro Cerbuna, 12, 50009 Zaragoza

Contact the author

Keywords

Wine aroma, maturity, acetaldehyde, reduction factors

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Shading nets for the adaptation to climate change: effect on vine physiology and grape quality 

Viticulture is threatened by the environmental modification caused by climate change. Higher temperatures determine an acceleration of the ripening process, which can be detrimental to wine quality. In the mediterranean area, heat waves are also increasingly frequent, with consequent blocking of the vegetative activity of the vines and increased susceptibility to sunburn damage. thus, adaptation strategies are necessary to reduce stress and improve the quality of grape production. Amongst the various techniques available, shading nets represent an interesting alternative for their effects on canopy microclimate (i.e., reduction of photosynthetic activity, improvement of water use efficiency, and slowing down in the ripening process).

Elicitors used as a tool to increase stilbenes in grapes and wines

The economic importance of grapevine as a crop plant makes Vitis vinífera a good model system to study the improvement of the nutraceutical properties of food products (Vezulli et al. 2007). Stilbenes in general, and trans-resveratrol in particular, have been reported to be responsible for various beneficial effects. Resveratrol´s biological properties include antibacteria and antifungal effects, as well as cardioprotective, neuroprotective and anticâncer actions (Guerrero et al. 2010 ). Stilbenes can be induced by biotic and abiotic elicitors since they are phytoalexins (Bavaresco et al. 2001).

Effect of vineyard nitrogen management on Souviginer gris wine sensory quality and aromatic compounds

Fungus-Resistant Grape (FRG) varieties represent a promising approach to address the challenges of climate change and sustainability in viticulture.

Comparison of the free radical-scavenging activity in infected oidium and sound dolcetto grape cultivar grown in a terroir of Central Italy

The importance of polyphenols, which are present in many vegetables and grapes too, is well-know and documented. Specific research works about the red grape

Island and coastal vineyards in the context of climate change

Aim: The notion of “terroir” enables the attribution of distinctive characteristics to wines from the same region. Climate change raises issues about viticulture, especially the growth of the vines and even more importantly the economic situation of actual wine-growing regions (Schultz and Jones 2010; Quénol 2014). Several studies have addressed the impacts of climate change on viticulture in