OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

Abstract

The wine aroma is constituted by hundred of volatile chemical compounds that depend on many viticultural and oenological factors. One of the most important factors that will unequivocally affect the final wine pro-perties is the grape maturity level. Grape ripening is an extremely complex process, in which the metabolites and precursors concentrations change significantly with time. However, the knowledge of how grape ripe-ning affects wine aroma composition is still quite limited. Nowadays, wineries measure parameters such as sugar, pH, acidity and colorimetric tests to evaluate the degree of maturity of the vintage and decide the harvest data, but these analysis do not take into consideration the aromatic potential of the grape. The objective of the present work is to understand the differences in the aroma chemical profile of Moristel wines from different vineyards harvested at different time points. So, three different vineyards of Moris-tel grape variety in D.O. Somontano were selected, in two consecutive vintages: two in 2016 and one in 2017. Each block was harvested at different time points followed by microvinifications applying the same fermentation protocol. All of them have been elaborated in triplicated. This was assessed by the analysis of major aroma compounds (GC-FID), trace aroma compounds (GC-MS), methoxypyrazines (TD-GCxGC-MS), polyfunctionalmercaptans (SPE GC-MS), volatile sulfur compounds (BR-VSCs) and total acetaldehyde (HPLC-UV/VIS). The most important result is that the grapes harvested at 42 days postveraison, that is the “green” ones, pro-duce wines with high concentration of acetaldehyde and low IPT. Hence, low concentration of polyphenols facilitate the accumulation of this compound. Another reason for these acetaldehyde high concentrations could be problems associated with the lack of reduction factors (NADH or NADPH). This fact is also corroborated with the decreases of branched acid / fusel alcohol and branched ester/fu-sel alcohol ratios during the maturity. These facts can have very important sensory repercussion, the acetaldehyde and fusel alcohol are components of aroma buffer.

Finally, the evolution of certain maturity markers (c-3-hexenol, Y-nonalactona, rotundone) has been also observed, but these target compounds, by themselves, do not seem to have great sensory relevance in the final wines. This study has help to elucidate how grape maturity state contributes to final Moristel wine aroma profile and possible self-life.

Acknowledgements

This work has been funded by the Spanish MINECO (Project AGL2014-59840, RTC 2015-3379 and RTC-2016-4935-2) and partly co-funded by the European Union (FEDER). I.A. has re-ceived a grant from the Spanish FPU programs. Funding from D.G.A. (T53) and Fondo Social Europeo is acknowledged.

DOI:

Publication date: June 9, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ignacio Arias, Sara Ferrero-del-Teso, María Pilar Sáenz-Navajas, Purificación Fernández-Zurbano,Blanca Lacau, Jesús Astraín, Cristina Barónv Vicente Ferreira, Ana Escudero

Instituto de Ciencias de la Vid y el Vino (ICVV) (Universidad de La Rioja-CSIC-Gobierno de La Rioja), Carre-tera de Burgos Km. 6, Finca La Grajera, 26007 Logroño, La Rioja, Spain
Laboratorio de análisis del aroma y enología (LAAE). Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA). Calle Pedro Cerbuna, 12, 50009 Zaragoza

Contact the author

Keywords

Wine aroma, maturity, acetaldehyde, reduction factors

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).

Classification of the wine-growing environment of Central Mancha (Spain). First works

This paper describes a zoning study performed on a vast territory of around 86,500 hectares, situated in the countryside area of La Mancha Central (Castilla-La Mancha). The aim of the study was to classify the environment according to a small number of ecological criteria, establish the relevant territorial units and generate thematic maps with the different levels of criteria employed and synthetic maps by crossing these criteria.

Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas.

Applying artificial intelligence for improving grape yield estimation: A case study of wine and table grapes in South Africa

Accurate grape yield estimation is essential for effective vineyard management, crop planning, and resource allocation. Traditional methods often involve time-consuming and labour-intensive processes, which may introduce errors due to the large size and inherent spatial variability of the vineyard blocks.

The drought, the temperature, and the time: drivers of osmotic adjustment?

Context and purpose of the study. Leaf osmotic adjustment (i.e., active accumulation of osmolytes in the cells) has been reported in grapevines in response to drought and as a natural process throughout the growing season (seasonal osmotic adjustment).