OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

Abstract

The wine aroma is constituted by hundred of volatile chemical compounds that depend on many viticultural and oenological factors. One of the most important factors that will unequivocally affect the final wine pro-perties is the grape maturity level. Grape ripening is an extremely complex process, in which the metabolites and precursors concentrations change significantly with time. However, the knowledge of how grape ripe-ning affects wine aroma composition is still quite limited. Nowadays, wineries measure parameters such as sugar, pH, acidity and colorimetric tests to evaluate the degree of maturity of the vintage and decide the harvest data, but these analysis do not take into consideration the aromatic potential of the grape. The objective of the present work is to understand the differences in the aroma chemical profile of Moristel wines from different vineyards harvested at different time points. So, three different vineyards of Moris-tel grape variety in D.O. Somontano were selected, in two consecutive vintages: two in 2016 and one in 2017. Each block was harvested at different time points followed by microvinifications applying the same fermentation protocol. All of them have been elaborated in triplicated. This was assessed by the analysis of major aroma compounds (GC-FID), trace aroma compounds (GC-MS), methoxypyrazines (TD-GCxGC-MS), polyfunctionalmercaptans (SPE GC-MS), volatile sulfur compounds (BR-VSCs) and total acetaldehyde (HPLC-UV/VIS). The most important result is that the grapes harvested at 42 days postveraison, that is the “green” ones, pro-duce wines with high concentration of acetaldehyde and low IPT. Hence, low concentration of polyphenols facilitate the accumulation of this compound. Another reason for these acetaldehyde high concentrations could be problems associated with the lack of reduction factors (NADH or NADPH). This fact is also corroborated with the decreases of branched acid / fusel alcohol and branched ester/fu-sel alcohol ratios during the maturity. These facts can have very important sensory repercussion, the acetaldehyde and fusel alcohol are components of aroma buffer.

Finally, the evolution of certain maturity markers (c-3-hexenol, Y-nonalactona, rotundone) has been also observed, but these target compounds, by themselves, do not seem to have great sensory relevance in the final wines. This study has help to elucidate how grape maturity state contributes to final Moristel wine aroma profile and possible self-life.

Acknowledgements

This work has been funded by the Spanish MINECO (Project AGL2014-59840, RTC 2015-3379 and RTC-2016-4935-2) and partly co-funded by the European Union (FEDER). I.A. has re-ceived a grant from the Spanish FPU programs. Funding from D.G.A. (T53) and Fondo Social Europeo is acknowledged.

DOI:

Publication date: June 9, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ignacio Arias, Sara Ferrero-del-Teso, María Pilar Sáenz-Navajas, Purificación Fernández-Zurbano,Blanca Lacau, Jesús Astraín, Cristina Barónv Vicente Ferreira, Ana Escudero

Instituto de Ciencias de la Vid y el Vino (ICVV) (Universidad de La Rioja-CSIC-Gobierno de La Rioja), Carre-tera de Burgos Km. 6, Finca La Grajera, 26007 Logroño, La Rioja, Spain
Laboratorio de análisis del aroma y enología (LAAE). Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA). Calle Pedro Cerbuna, 12, 50009 Zaragoza

Contact the author

Keywords

Wine aroma, maturity, acetaldehyde, reduction factors

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Impact of Metschnikowia pulcherrima and Saccharomyces cerevisiae in mixed fermentation on volatile compounds and energy sustainability in Lugana wine

In recent years, heightened awareness of the environmental impact has led to sustainability as a key issue for the winemaking sector.

High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

AIM: High pressure technologies represent a promising alternative to thermal treatments for improving quality and safety of liquid foods.

Cell-to-cell contact modulates Starmerella bacillaris early death in mixed fermentations with Saccharomyces cerevisiae in a couple-dependent way

AIM: The diversity and complexity of the fermentation ecosystem during wine making limits the successful prediction of wine characteristics. The use of selected starter cultures has allowed a better control of the fermentation process and the production of wines with established characteristics. Among them, the use of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae yeasts has gained attention in recent years due to the fructophylic nature of the first and the ability of this inoculation protocol to reduce the acetic acid and ethanol content of the wines.

Application of treatments to delay the ripening of grape varieties cultivated in valpolicella

Winegrape cultivars are particularly sensitive to temperature and recent changes in climate have advanced the onset of berry ripening, resulting in unbalanced fruit composition at harvest.

Genotypic differences in early-stage root architectural traits and consequences for water uptake in three grapevine rootstocks differing in drought tolerance

Root architecture (RSA), the spatial-temporal arrangement of a root system in soil, is essential for edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The aims of this study were (i) to determine the phenotypic differences in traits related to root distribution and morphology along the substrate profile in different Vitis rootstocks during early growth, (ii) to assess the plasticity of these traits to soil water deficit and (iii) to quantify their relationships with plant water uptake.