GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Abstract

Context and purpose of the study – Bushfires are a common occurrence throughout Australia and their incidence is predicted to both rise and increase in severity due to climate change. Many of these bushfires occur in areas close to wine regions, which receive different levels of exposure to smoke. Wine produced from smoke-affected grapes are characterised by unpalatable smoky aromas such as “burning rubber”, “smoked meats” and “burnt wood”. These smoke tainted wines are unprofitable and result in significant financial losses for winegrowers. This study investigated the use of near-infrared (NIR) spectroscopy and machine learning (ML) modelling for the rapid and non-destructive detection of grapevine smoke exposure by analysing grapevine leaves and/or grape berries.

Materials and methods – The trial was conducted during the 2018/2019 season at the University of Adelaide’s Waite campus in Adelaide, South Australia (34° 58’ S, 138° 38’ E) and involved the application of five different smoke and water misting treatments to Cabernet Sauvignon grapevines at approximately seven days post-veraison. Treatment vines were exposed to straw-based smoke for one hour under experimental conditions described previously by Kennison et al. (2008) and Ristic et al. (2011). Near-infrared (NIR) measurements were then taken from berries and leaves a day after smoking using the microPHAZIR TM RX NIR Analyser (Thermo Fisher Scientific, Waltham, USA) which has a spectral range of 1600-2396 nm. The NIR spectra were then used as inputs to train different ML algorithms, which resulted in two artificial neural networks (ANNs) with the best classification performance for either berry or leaf readings according to the different smoke treatments.

Results – Both ANN models found were able to correctly classify the leaf and berry spectral readings with high accuracy. The leaf model had an overall accuracy of 95.2%, 97.7% accuracy during training with a mean square error (MSE) 0.0082, 90.9% during validation with a MSE of 0.0353 and 88.1% during the testing stage with a MSE of 0.0386, while the berry model had an overall accuracy of 91.7%, 95.2% accuracy during training with a MSE of 0.0173, 86.4% during validation with a MSE of 0.0560 and 80.2% during the testing stage with a MSE of 0.0560. These results showed the potential of developing a rapid, non-destructive, in-field detection system for assessing grapevine smoke contamination following a bushfire using NIR spectroscopy and artificial neural network modelling.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Vasiliki SUMMERSON, Claudia GONZALEZ VIEJO, Damir TORRICO, Sigfredo FUENTES*

The University of Melbourne, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Parkville 3010, Victoria, Australia

Contact the author

Keywords

bushfires, machine learning, smoke taint, climate change, non-destructive

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The importance of rural extension and advisory services to achieve a sustainable viticulture in a climate change scenario

A healthy and dynamic agricultural sector is an important foundation of rural development, generating strong bonds to other economic sectors.

La viticulture durable: concept et application aux terroirs viticoles

Evoquer la notion de durabilité pour la vigne, plante multimillénaire, et le vin, tous deux intimement liés aux origines de notre civilisation, peut paraître un non-sens.

Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

New pathogen resistant varieties allow an efficient and greatly reduced use of fungicides. These new varieties promise, therefore, an enormous potential to reach the European Green Deal aim of a 50% reduction of pesticides in EU agriculture by 2030.

Climate, Viticulture, and Wine … my how things have changed!

The planet is warmer than at any time in our recorded past and increasing greenhouse emissions and persistence in the climate system means that continued warming is highly likely. Climate change has already altered the basic framework of growing grapes for wine production worldwide and will likely continue to do so for years to come. The wine sector can continue to play an important role in leading the agricultural sector in addressing climate change. From developing on…

Influence des facteurs naturels du terroir sur la maturation du raisin en Alsace

A study of the influence of environmental factors on the ripening of grapes under the conditions of Alsace is carried out. Emphasis is placed on the analysis of the mesoclimate and pedoclimate. The experiment is conducted on a network of plots of gewurztraminer grafted on SO4. The production conditions are standardized throughout the device.