GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Abstract

Context and purpose of the study – Bushfires are a common occurrence throughout Australia and their incidence is predicted to both rise and increase in severity due to climate change. Many of these bushfires occur in areas close to wine regions, which receive different levels of exposure to smoke. Wine produced from smoke-affected grapes are characterised by unpalatable smoky aromas such as “burning rubber”, “smoked meats” and “burnt wood”. These smoke tainted wines are unprofitable and result in significant financial losses for winegrowers. This study investigated the use of near-infrared (NIR) spectroscopy and machine learning (ML) modelling for the rapid and non-destructive detection of grapevine smoke exposure by analysing grapevine leaves and/or grape berries.

Materials and methods – The trial was conducted during the 2018/2019 season at the University of Adelaide’s Waite campus in Adelaide, South Australia (34° 58’ S, 138° 38’ E) and involved the application of five different smoke and water misting treatments to Cabernet Sauvignon grapevines at approximately seven days post-veraison. Treatment vines were exposed to straw-based smoke for one hour under experimental conditions described previously by Kennison et al. (2008) and Ristic et al. (2011). Near-infrared (NIR) measurements were then taken from berries and leaves a day after smoking using the microPHAZIR TM RX NIR Analyser (Thermo Fisher Scientific, Waltham, USA) which has a spectral range of 1600-2396 nm. The NIR spectra were then used as inputs to train different ML algorithms, which resulted in two artificial neural networks (ANNs) with the best classification performance for either berry or leaf readings according to the different smoke treatments.

Results – Both ANN models found were able to correctly classify the leaf and berry spectral readings with high accuracy. The leaf model had an overall accuracy of 95.2%, 97.7% accuracy during training with a mean square error (MSE) 0.0082, 90.9% during validation with a MSE of 0.0353 and 88.1% during the testing stage with a MSE of 0.0386, while the berry model had an overall accuracy of 91.7%, 95.2% accuracy during training with a MSE of 0.0173, 86.4% during validation with a MSE of 0.0560 and 80.2% during the testing stage with a MSE of 0.0560. These results showed the potential of developing a rapid, non-destructive, in-field detection system for assessing grapevine smoke contamination following a bushfire using NIR spectroscopy and artificial neural network modelling.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Vasiliki SUMMERSON, Claudia GONZALEZ VIEJO, Damir TORRICO, Sigfredo FUENTES*

The University of Melbourne, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Parkville 3010, Victoria, Australia

Contact the author

Keywords

bushfires, machine learning, smoke taint, climate change, non-destructive

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Great highlands wine growing terroir: conditions and expressions

During 1982 started our wine growing project at the Puntalarga Hill, between 2500 and 2600 meters a.s.l.: 5.78 ºN, 72.98 ºW. Pinot noir, white Riesling and Riesling x Silvaner crossings are the most planted grapevines. Since 1984 research and development activities are carried out on pertinent subjects.

A multidisciplinary approach to grapevine zoning G.I.S. technology based: an example of thermal data elaboration

Un grand nombre d’études ont été consacrées à l’évaluation quantitative des effets de climat sur la qualité des vignes, dans différents contextes climatiques. Généralement, la vocation viticole d’un terroire peut être étudiée par des approches mono ou multidisciplinaires.

Predatory Arthropods associated with potential locally-adapted native insectary plants for Australian vineyards

Three locally-adapted native plants were evaluated to determine their capacity to provide insectary benefits to predatory arthropods in association with vineyards, and thereby to enhance biological control of insect pests. Native plants are preferred as supplementary flora, as they are naturally adapted to Australia’s climatic conditions.

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).