GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Abstract

Context and purpose of the study – Bushfires are a common occurrence throughout Australia and their incidence is predicted to both rise and increase in severity due to climate change. Many of these bushfires occur in areas close to wine regions, which receive different levels of exposure to smoke. Wine produced from smoke-affected grapes are characterised by unpalatable smoky aromas such as “burning rubber”, “smoked meats” and “burnt wood”. These smoke tainted wines are unprofitable and result in significant financial losses for winegrowers. This study investigated the use of near-infrared (NIR) spectroscopy and machine learning (ML) modelling for the rapid and non-destructive detection of grapevine smoke exposure by analysing grapevine leaves and/or grape berries.

Materials and methods – The trial was conducted during the 2018/2019 season at the University of Adelaide’s Waite campus in Adelaide, South Australia (34° 58’ S, 138° 38’ E) and involved the application of five different smoke and water misting treatments to Cabernet Sauvignon grapevines at approximately seven days post-veraison. Treatment vines were exposed to straw-based smoke for one hour under experimental conditions described previously by Kennison et al. (2008) and Ristic et al. (2011). Near-infrared (NIR) measurements were then taken from berries and leaves a day after smoking using the microPHAZIR TM RX NIR Analyser (Thermo Fisher Scientific, Waltham, USA) which has a spectral range of 1600-2396 nm. The NIR spectra were then used as inputs to train different ML algorithms, which resulted in two artificial neural networks (ANNs) with the best classification performance for either berry or leaf readings according to the different smoke treatments.

Results – Both ANN models found were able to correctly classify the leaf and berry spectral readings with high accuracy. The leaf model had an overall accuracy of 95.2%, 97.7% accuracy during training with a mean square error (MSE) 0.0082, 90.9% during validation with a MSE of 0.0353 and 88.1% during the testing stage with a MSE of 0.0386, while the berry model had an overall accuracy of 91.7%, 95.2% accuracy during training with a MSE of 0.0173, 86.4% during validation with a MSE of 0.0560 and 80.2% during the testing stage with a MSE of 0.0560. These results showed the potential of developing a rapid, non-destructive, in-field detection system for assessing grapevine smoke contamination following a bushfire using NIR spectroscopy and artificial neural network modelling.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Vasiliki SUMMERSON, Claudia GONZALEZ VIEJO, Damir TORRICO, Sigfredo FUENTES*

The University of Melbourne, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Parkville 3010, Victoria, Australia

Contact the author

Keywords

bushfires, machine learning, smoke taint, climate change, non-destructive

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Adapting the vineyard to climate change in warm climate regions with cultural practices

Since the 1980s global regime shift, grape growers have been steadily adapting to a changing climate. These adaptations have preserved the region-climate-cultivar rapports that have established the global trade of wine with lucrative economic benefits since the middle of 17th century. The advent of using fractions of crop and actual evapotranspiration replacement in vineyards with the use of supplemental irrigation has furthered the adaptation of wine grape cultivation. The shift in trellis systems, as well as pruning methods from positioned shoot systems to sprawling canopies, as well as adapting the bearing surface from head-trained, cane-pruned to cordon-trained, spur-pruned systems have also aided in the adaptation of grapevine to warmer temperatures. In warm climates, the use of shade cloth or over-head shade films not only have aided in arresting the damage of heat waves, but also identified opportunities to reduce the evapotranspiration from vineyards, reducing environmental footprint of vineyard. Our increase in knowledge on how best to understand the response of grapevine to climate change was aided with the identification of solar radiation exposure biomarker that is now used for phenotyping cultivars in their adaptability to harsh environments. Using fruit-based metrics such as sugar-flavonoid relationships were shown to be better indicators of losses in berry integrity associated with a warming climate, rather than solely focusing on region-climate-cultivar rapports. The resilience of wine grape was further enhanced by exploitation of rootstock × scion combinations that can resist untoward droughts and warm temperatures by making more resilient grapevine combinations. Our understanding of soil-plant-atmosphere continuum in the vineyard has increased within the last 50 years in such a manner that growers are able to use no-till systems with the aid of arbuscular mycorrhiza fungi inoculation with permanent cover cropping making the vineyard more resilient to droughts and heat waves. In premium wine grape regions viticulture has successfully adapted to a rapidly changing climate thus far, but berry based metrics are raising a concern that we may be approaching a tipping point.

Kegged wine as a sustainable alternative: impact on conservation and sensory quality

Wine is not just a beverage; it represents an entire ecosystem in winemaking regions and is deeply linked to economic, social, and environmental factors.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

Zonazione dell’area viticola doc durello

Il lavoro di zonazione riveste un ruolo importante per capire le potenzialità e la vocazionalità di una specifica area viticola. La viticoltura dovrebbe essere vista in funzione dell’obiettivo enologico che si vuole realizzare e quindi particolare importanza riveste il risultato delle vinificazioni delle uve provenienti dai vigneti delle diverse aree della zona di produzione oggetto d’indagine. La zonazione dell’area a DOC Monti Lessini Durello ha preso in esame la varietà “Durella”, vitigno autoctono del territorio, che rappresenta la maggior parte della produzione vitivinicola della zona.

Gevrey-Chambertin : les enjeux d’un territoire vitivinicole locale à l’échelle mondiale

An emblematic name of the burgundy wine region, a few kilometers from dijon, gevrey-chambertin stands out as a small wine town of international renown in the heart of a prestigious red wine vineyard listed as a unesco world heritage site.