GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Abstract

Context and purpose of the study – Bushfires are a common occurrence throughout Australia and their incidence is predicted to both rise and increase in severity due to climate change. Many of these bushfires occur in areas close to wine regions, which receive different levels of exposure to smoke. Wine produced from smoke-affected grapes are characterised by unpalatable smoky aromas such as “burning rubber”, “smoked meats” and “burnt wood”. These smoke tainted wines are unprofitable and result in significant financial losses for winegrowers. This study investigated the use of near-infrared (NIR) spectroscopy and machine learning (ML) modelling for the rapid and non-destructive detection of grapevine smoke exposure by analysing grapevine leaves and/or grape berries.

Materials and methods – The trial was conducted during the 2018/2019 season at the University of Adelaide’s Waite campus in Adelaide, South Australia (34° 58’ S, 138° 38’ E) and involved the application of five different smoke and water misting treatments to Cabernet Sauvignon grapevines at approximately seven days post-veraison. Treatment vines were exposed to straw-based smoke for one hour under experimental conditions described previously by Kennison et al. (2008) and Ristic et al. (2011). Near-infrared (NIR) measurements were then taken from berries and leaves a day after smoking using the microPHAZIR TM RX NIR Analyser (Thermo Fisher Scientific, Waltham, USA) which has a spectral range of 1600-2396 nm. The NIR spectra were then used as inputs to train different ML algorithms, which resulted in two artificial neural networks (ANNs) with the best classification performance for either berry or leaf readings according to the different smoke treatments.

Results – Both ANN models found were able to correctly classify the leaf and berry spectral readings with high accuracy. The leaf model had an overall accuracy of 95.2%, 97.7% accuracy during training with a mean square error (MSE) 0.0082, 90.9% during validation with a MSE of 0.0353 and 88.1% during the testing stage with a MSE of 0.0386, while the berry model had an overall accuracy of 91.7%, 95.2% accuracy during training with a MSE of 0.0173, 86.4% during validation with a MSE of 0.0560 and 80.2% during the testing stage with a MSE of 0.0560. These results showed the potential of developing a rapid, non-destructive, in-field detection system for assessing grapevine smoke contamination following a bushfire using NIR spectroscopy and artificial neural network modelling.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Vasiliki SUMMERSON, Claudia GONZALEZ VIEJO, Damir TORRICO, Sigfredo FUENTES*

The University of Melbourne, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Parkville 3010, Victoria, Australia

Contact the author

Keywords

bushfires, machine learning, smoke taint, climate change, non-destructive

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Foamability of bentonite treated wines: impact of new acacia gum fractions obtained by ionic exchange chromatography (IEC)

Copper (Cu) is known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. Recent work has shown that Cu exists predominantly in a sulfide-bound form, which may act as a potential source of sulfidic off-odours in wine and hence contribute to reductive flavours

First identification of a glycosylated fraction involved in mushroom-off-flavor in grapes: influence of B. cinerea, powdery mildew and C. subabruptus

An organoleptic defect, called fresh mushrooms off-flavor, appeared in wines and spirits since the 2000’s. Numerous researches demonstrated that octen-3-one, octan-3-ol and octen-3-ol

Climate change impacts on Douro Region viticulture and adaptation measures

Climate has a significant impact in the success of any agricultural system, with a direct influence on the crops suitability to a given region, interfering on yield and quality and also with the economic sustainability of the productive activity. In the Douro Demarcated Region (RDD), as in most regions of the Mediterranean climate, the scarce precipitation (33% has less than 600 mm per year), and your high variability, associated with high rates of evapotranspiration during the summer, is usually one of the fundamental factors that limit the grapevine development, as well as the production and quality of the harvest. Thus, facing the scenario in temperature changes for the next decades (1.5-2.5°C) and confirming the predictions of precipitation decreases and/or great variability in the occurrence of heat waves and intense rainfall, the consequences for slope stability in mountain viticulture and sustainability of all operations involved, are risks to be taken into account. In this way, a deepest and sustained knowledge regarding the adaptation measures to adverse environmental conditions is of a crucial importance, enabling a more efficient adaptation of plant growth conditions and the optimization of production and quality of the grapevines. The development of this work, carried out in two commercial vineyards, one located in Soutelo do Douro, São João da Pesqueira, Cima Corgo sub-region, and another located in Numão, Vila Nova de Foz Côa, Douro Superior sub-region, it seeks to establish a relationship between climatic elements and physiological, productive and qualitative parameters, as well as to evaluate the effectiveness of adaptation measures, including different types of deficit irrigation (2002-2019) and the application of shading nets (2019-2020) in the physiological, viticultural and oenological behavior in the Touriga Nacional and Moscatel Galego Branco varieties, respectively. The results showed that the application of deficit irrigation allowed to significantly reduce the impact of the adverse weather conditions at key moments in the development of the grapevine, particularly in the period immediately before veráison and maturation, reducing the negative effects on the physiological processes and productivity, without compromise the must quality parameters. On the other hand, the application of shading nets significantly reduced de leaves temperature, allowing to increase the water potential, stomatal conductance and photosynthetic rate of grapes, which was reflected in the yield increase in the 2nd year of the study. For the maturation indicators, higher levels of total acidity, malic acid and assimilable nitrogen were obtained. The last measure presents a huge potential, being essential to carry out more years of trials to obtain stronger conclusions in terms of production parameters, but also in characteristics as important as the grape ripening components and the organoleptic characteristics of wines.

Water retention properties of viticultural calcisols from D. O. P. Valdepeñas (Spain)

A good knowledge of the soil physicochemical properties, as well as its ability to retain and put the necessary water available to the plants, is essential when it comes at the design of an irrigation plan.

Effect of stilbenes on malolactic fermentation performance of onoccocus oeni and lactiplantibacillus plantarum strains in wine production

Malolactic fermentation (MLF) is an important step in winemaking to improve wine quality through deacidification, increased microbial stability, and altered wine flavor. The phenolic composition of wine influences the growth and metabolism of lactic acid bacteria (lab) used for MLF.