GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Abstract

Context and purpose of the study – Bushfires are a common occurrence throughout Australia and their incidence is predicted to both rise and increase in severity due to climate change. Many of these bushfires occur in areas close to wine regions, which receive different levels of exposure to smoke. Wine produced from smoke-affected grapes are characterised by unpalatable smoky aromas such as “burning rubber”, “smoked meats” and “burnt wood”. These smoke tainted wines are unprofitable and result in significant financial losses for winegrowers. This study investigated the use of near-infrared (NIR) spectroscopy and machine learning (ML) modelling for the rapid and non-destructive detection of grapevine smoke exposure by analysing grapevine leaves and/or grape berries.

Materials and methods – The trial was conducted during the 2018/2019 season at the University of Adelaide’s Waite campus in Adelaide, South Australia (34° 58’ S, 138° 38’ E) and involved the application of five different smoke and water misting treatments to Cabernet Sauvignon grapevines at approximately seven days post-veraison. Treatment vines were exposed to straw-based smoke for one hour under experimental conditions described previously by Kennison et al. (2008) and Ristic et al. (2011). Near-infrared (NIR) measurements were then taken from berries and leaves a day after smoking using the microPHAZIR TM RX NIR Analyser (Thermo Fisher Scientific, Waltham, USA) which has a spectral range of 1600-2396 nm. The NIR spectra were then used as inputs to train different ML algorithms, which resulted in two artificial neural networks (ANNs) with the best classification performance for either berry or leaf readings according to the different smoke treatments.

Results – Both ANN models found were able to correctly classify the leaf and berry spectral readings with high accuracy. The leaf model had an overall accuracy of 95.2%, 97.7% accuracy during training with a mean square error (MSE) 0.0082, 90.9% during validation with a MSE of 0.0353 and 88.1% during the testing stage with a MSE of 0.0386, while the berry model had an overall accuracy of 91.7%, 95.2% accuracy during training with a MSE of 0.0173, 86.4% during validation with a MSE of 0.0560 and 80.2% during the testing stage with a MSE of 0.0560. These results showed the potential of developing a rapid, non-destructive, in-field detection system for assessing grapevine smoke contamination following a bushfire using NIR spectroscopy and artificial neural network modelling.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Vasiliki SUMMERSON, Claudia GONZALEZ VIEJO, Damir TORRICO, Sigfredo FUENTES*

The University of Melbourne, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Parkville 3010, Victoria, Australia

Contact the author

Keywords

bushfires, machine learning, smoke taint, climate change, non-destructive

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Can the satellite image resolution be improved to support precision agriculture in the vineyard through vegetation indices?

Aim: This study aims to show the application of a new methodological approach to improve the resolution of Sentinel-2A images and derived vegetation indices through the results from different vineyards. 

Green berries on Gewürztraminer (Vitis vinifera L.) in South Tyrol (Italy)

The grape variety Gewürztraminer is known to be affected by two physiological disorders namely berry shrivel and bunch stem necrosis. During the season 2014 we noticed a new symptomatology type of ripening disorder on the variety. The new symptom showed not all berries fallowing the normal maturation stages, but single berries remaining at a soft but green stage till harvest. The broad distribution of these so called “green berries” symptoms in different production sites of our region, caused huge damage due to the difficulty of eliminating single berries per bunch before harvesting. Therefore, the Research Centre Laimburg began to investigate the reasons and origins of this new symptom. This work shows the results of first attempts to find causes for the symptom as well as the resulting approach to mitigate symptoms. Applications of magnesium leaf fertilizer showed first promising results against this putative disorder. To study the causal effect of the green berries 30 symptomatic vineyards in 2014 have been selected for a monitoring during the season 2016. To evaluate the foliar nutrient treatment two vineyards have been selected for application of magnesium sulfate and magnesium chloride. Leaf and berry nutrient analysis, as well as the main quality parameters during ripening have been performed. As soon as “green berries” symptoms appeared, incidence and severity have been evaluated. Most of the symptomatic vineyards of the 2016 monitoring showed light to clear magnesium deficit symptoms on their foliage. Only during the seasons 2020 and 2021 “green berries” symptoms could be found in the leaf fertilizer treatment vineyards. Both seasons showed a significant effect of the magnesium treatments to reduce the incidence and severity of the symptom. It seems that the appearance of the “green berries” symptom on Gewürztraminer is correlated to a disturbed uptake of magnesium of the vines.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Influence of short-time skin maceration combined with enzyme treatment on the volatile composition of musts from fresh and withered fiano winegrapes

AIM: The increasing market competitiveness is promoting the production of special dry wines with distinctive characteristics, obtained either from minor winegrape varieties and/or the inclusion of partially dehydrated grapes.

Zoning the climatic potentialities and risk of vineyards & wine production regions

In this video recording of the IVES science meeting 2021, Benjamin Bois (Institut Universitaire de la Vigne et du Vin – IUVV, Université de Bourgogne, Dijon, France) speaks about zoning the climatic potentialities and risk of vineyards & wine production regions. This presentation is based on an original article accessible for free on OENO One