GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Modeling sugar accumulation dynamics of a wide variety of grape cultivars (Vitis vinifera L.)

Modeling sugar accumulation dynamics of a wide variety of grape cultivars (Vitis vinifera L.)

Abstract

Context and purpose of the study – Climate change is a major challenge in wine production. The IPCC (2014) projected that by the end of the 21st century average temperatures will increase by 1-3.7°C. Consequently, harvest dates could advance by approximately 30 days. A general observed trend is the increase in berry sugar content and decrease in organic acids, posing challenges for winegrowers. Variability among cultivars is a precious resource to adapt viticulture to a changing environment.The aim of this study is to model and compare the sugar accumulation dynamics for a wide variety of Vitis Vinifera (L.) grape cultivars. Determining ripening dynamics with the help of a single mathematical function will allow for cultivar classification and provide a means of determining suitability of grape cultivars under conditions of climate change, or in potentially new wine producing regions.

Material and methods – Berry samples were collected from 50 different Vitis Vinifera (L.) cultivars at four replicate locations within a common-garden randomized complete block design at the ISVV from 2012-2018. Samples were collected weekly between mid-veraison and maturity, from which berry fresh weight, reducing sugar, and other parameters were measured. The integrative indicator of water status (∂13C) was measured at maturity for every cultivar. A 3-parameter logistic function was fitted for sugar accumulation expressed in both concentration (g/L) and content (mg/berry).

Results – A logistic model was parameterized to the sugar accumulation data from 50 grape cultivars and ripening traits were extracted. Analysis of variance revealed there was a strong cultivar effect on the rate of sugar accumulation, while there was a strong year effect on the total sugar concentration accumulated. The length of the ripening period showed to be dependent on both year and cultivar. This research aids in determining the suitability of grape cultivars under changing climate conditions or in newly projected viticultural areas. The coefficients extracted from the model allow for the testing of other hypotheses and research questions. One of the questions under investigation, is whether the rate of sugar accumulation is influenced by water deficit (∂13C) and climatic variables (temperature, PAR, etc.).

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Bruno SUTER1, Agnès DESTRAC-IRVINE1, Mark GOWDY1, Zhanwu DAI1, Cornelis VAN LEEUWEN1

EGFV, Bordeaux Sciences Agro, INRA, ISVV, Univ. of Bordeaux, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

sugar accumulation dynamics, logistic function, ripening traits, water status, temperature, grapevine cultivars

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

What does the concept of natural wine evoke in the minds and senses of tasters? Effect of the level of expertise.

In this video recording of the IVES science meeting 2025, Jordi Ballester (Centre des sciences du goût et de l’alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne-Franche-Comté, Dijon, France) and María-Pilar Sáenz-Navajas (Instituto de Ciencias de la Vid y el Vino (ICVV) (CSIC-UR-GR), La Rioja, Spain) speak about the concept of natural wine. This presentation is based on an original article accessible for free on OENO One.

The use of elicitors in viticulture: a tool to obtain highly colored wines with a reduce alcohol content?

Climate change is causing a gap between the technological and phenolic maturity of grapes, resulting in wines with high alcohol content and low polyphenol concentration. Another phenomenon associated with high temperatures and whose effect is more pronounced if the harvest is delayed is the decrease in the acidity of the grapes, mainly in malic acid, and an increase in pH caused by the accumulation of potassium derived from the increase in temperature. Therefore, climate change and the effects it causes on the vine leads to unbalanced wines, with high alcohol content and lack of color, with green tannins, astringency and excessively low acidity if not corrected.

Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

The measurement of carbon isotopic discrimination of musts (δ13C) at harvest is an integrated assessment of water status during ripening of grapevine. It is an alternative to traditional measurements of water status in the field, which is crucial for understanding spatial variability of plant physiology at the vineyard scale, proven useful for delineation of management zones in precision viticulture. The aim of this work was to attune the method for the first time to California conditions across a range of areas and cultivars with different hydric behavior, and to evaluate its efficiency in delineating management zones for selective harvest in commercial vineyards.

Effect of “Terroir” on quanti-qualitative paramethers of “vino nobile di Montepulciano”

In this last ten years period, there has been many integrated and interdisciplinary studies to determine the aptitude of different zones to viticulture (Lulli et al., 1989 ; Costantini, 1992 ; Fregoni et al., 1992). The researches needed some différent knowledges about environment characteristics (soil, climate), ecology, vineyard management, vine genetic, winemaking and sensory analysis. The interaction of all these knowledge produced the assessment about the environmental vocation (Scienza et al., 1992). By means of this metodology, the “viticultural vocation” joined the word “zoning”, that is the territory parting for its ecopedological and geographical characteristics in relation to adaptative answer of winegrape (Morlat, 1989).

Managing soil health in vineyards: knowns and unknowns 

The use of soil conservation practices in wine grape production is becoming common throughout the world in response to an increased awareness of the value of soil health to maintain crop productivity and environmental quality. However, little information is available on the meaning of soil health within a viticultural context, and what soil properties should be targeted to achieve both the agronomic and environmental goals of wine grape producers. Conservation practices lead to increases in soil organic matter which may improve soil water retention, and increase soil C content therefore constituting a potential avenue to adapt to droughts and sequester C. Well-known management practices such as the use of cover crops, compost or no-till, although effective, seem to result in highly variable outcomes in soil organic matter and other soil health indicators. This variability is likely associated to the application of the practices in different soils and climates. Thus, integration of soil health building practices needs a thorough understanding of their efficacy under different conditions. Furthermore, additions of soil organic matter could trigger emissions of CO2 and N2O, a potent greenhouse gas that could represent a potential tradeoff of soil conservation practices. Finally, nutrient and water availability may be affected by the increase in soil organic matter having consequences for vine balance and grape quality.