GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Modeling sugar accumulation dynamics of a wide variety of grape cultivars (Vitis vinifera L.)

Modeling sugar accumulation dynamics of a wide variety of grape cultivars (Vitis vinifera L.)

Abstract

Context and purpose of the study – Climate change is a major challenge in wine production. The IPCC (2014) projected that by the end of the 21st century average temperatures will increase by 1-3.7°C. Consequently, harvest dates could advance by approximately 30 days. A general observed trend is the increase in berry sugar content and decrease in organic acids, posing challenges for winegrowers. Variability among cultivars is a precious resource to adapt viticulture to a changing environment.The aim of this study is to model and compare the sugar accumulation dynamics for a wide variety of Vitis Vinifera (L.) grape cultivars. Determining ripening dynamics with the help of a single mathematical function will allow for cultivar classification and provide a means of determining suitability of grape cultivars under conditions of climate change, or in potentially new wine producing regions.

Material and methods – Berry samples were collected from 50 different Vitis Vinifera (L.) cultivars at four replicate locations within a common-garden randomized complete block design at the ISVV from 2012-2018. Samples were collected weekly between mid-veraison and maturity, from which berry fresh weight, reducing sugar, and other parameters were measured. The integrative indicator of water status (∂13C) was measured at maturity for every cultivar. A 3-parameter logistic function was fitted for sugar accumulation expressed in both concentration (g/L) and content (mg/berry).

Results – A logistic model was parameterized to the sugar accumulation data from 50 grape cultivars and ripening traits were extracted. Analysis of variance revealed there was a strong cultivar effect on the rate of sugar accumulation, while there was a strong year effect on the total sugar concentration accumulated. The length of the ripening period showed to be dependent on both year and cultivar. This research aids in determining the suitability of grape cultivars under changing climate conditions or in newly projected viticultural areas. The coefficients extracted from the model allow for the testing of other hypotheses and research questions. One of the questions under investigation, is whether the rate of sugar accumulation is influenced by water deficit (∂13C) and climatic variables (temperature, PAR, etc.).

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Bruno SUTER1, Agnès DESTRAC-IRVINE1, Mark GOWDY1, Zhanwu DAI1, Cornelis VAN LEEUWEN1

EGFV, Bordeaux Sciences Agro, INRA, ISVV, Univ. of Bordeaux, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

sugar accumulation dynamics, logistic function, ripening traits, water status, temperature, grapevine cultivars

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Le aree viticole storiche nel mondo: i loro vitigni, la loro protezione e la tipicità dei vini in esse ottenuti

Il tema da trattare si riferisce ai vari ecosistemi viticoli mondiali, ovviamente non facilmente sintetizzabili in una relazione. Sostanzialmente si richiama

Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Nitrogen (N) supply strongly influences vine productivity and berry composition, matching availability and uptake requirements of vines during the growing season is essential to optimize vine nutrition. The nutritional status of grapevines is commonly assessed by the determination of petiole nutrient concentrations at flowering. The reserve N could also be an earlier indicator for grapevine N status, this work aimed to assess how the petiole levels relate to these perennial N reserves.

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2].

Effects of graft quality on growth and grapevine-water relations

Climate change is challenging viticulture worldwide compromising its sustainability due to warmer temperatures and the increased frequency of extreme events. Grafting Vitis vinifera L.

Application of a low-cost device VIS-NIRs-based for polyphenol monitoring during the vinification process

In red wine production, phenolic maturity is becoming increasingly important. Anthocyanins, flavonoids and total polyphenols content and availability significantly influence the harvest time of wine grapes while, during vinification process, their extraction strongly affects wine body, color and texture