GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Long term influence of a cover crop in the agronomic and oenological performance of CV. Chardonnay

Long term influence of a cover crop in the agronomic and oenological performance of CV. Chardonnay

Abstract

Context and purpose of the study- Cover crops are acknowledged to be an interesting tool to produce higher quality grapes in red varieties, as they generally reduce vine vigour and yield. However, their incidence in white wine quality is not clear, since higher nitrogen availability can play an important positive role, and cover crops may compete for this nutrient. The possible reduction in available nitrogen can also modify the fermentation processes, as well as the synthesis of aromas in the wine. The aim of this work was to evaluate the long-term effect of a grass cover crop on grape and wine quality.

Material and methods – The study was conducted in a cv. Chardonnay vineyard located in Otazu (Navarra, Spain). During the 10 years prior to the experiment, the vineyard had been managed with a Festuca arundinacea and Lolium rigidum cover crop. In order to evaluate its incidence, at the beginning of the experiment, part of the rows were tilled, and the agronomic and oenological performance of both soil management strategies compared, with a detailed evaluation of the effects on must and wine amino acids.

Results – After 5 years of evaluation, the presence of the cover crop was shown not to affect yield, cluster number or berry weight, but it decreased pruning wood weight and leaf nitrogen content. Regarding grape composition, no differences were observed in terms of sugar content, pH and titratable acidity but covercropped vines produced grapes with lower yeast assimilable nitrogen and amino acid

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Javier ABAD1,2*, Félix CIBRIÁIN3, Luis G. SANTESTEBAN2, Diana MARÍN2, Ana SAGÜÉS3

INTIA, Edificio de Peritos Avda. Serapio Huici nº 22, 31610, Villava, Spain
Dpt. Agronomy, Biotechnology and Food Science, Univ. P. de Navarra, Campus Arrosadia, 31006 Pamplona, Spain
Sección de Viticultura y Enología, Gobierno de Navarra, C/Valle de Orba nº34, 31390, Olite, Spain

Contact the author

Keywords

amino acids, wine, tillage, Vitis vinifera L.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy. However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Phenolic extraction during fermentation as affected by ripeness level of Syrah/R99 grapes

L’extraction phénolique au cours de la fermentation à partir de vendanges de différents degrees de maturité du cépage Syrah/R99 a été etudiée. Cette travail fait parti d’un projet focalisé sur la qualité du raisin et des vins obtenus au cours du millésime 2002. Les vignes sont situées à Stellenbosch (Afrique du Sud) sur un sol Glenrose

Overview on wine and health 32 years after the French paradox 

Phenolic compounds or polyphenols are the most abundant and ubiquitous secondary metabolites present in the plant kingdom with more than 8000 phenolic structures currently known. These compounds play an important role in plant growth and reproduction, providing protection against biotic and abiotic stress such as pathogen and insect attack, UV radiation and wounding. (poly)phenols are widely distributed in the human diet mainly in plant-derived food and beverages (fruits, vegetables, nuts, seeds, herbs, spices, tea and red wine).

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.