GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Long term influence of a cover crop in the agronomic and oenological performance of CV. Chardonnay

Long term influence of a cover crop in the agronomic and oenological performance of CV. Chardonnay

Abstract

Context and purpose of the study- Cover crops are acknowledged to be an interesting tool to produce higher quality grapes in red varieties, as they generally reduce vine vigour and yield. However, their incidence in white wine quality is not clear, since higher nitrogen availability can play an important positive role, and cover crops may compete for this nutrient. The possible reduction in available nitrogen can also modify the fermentation processes, as well as the synthesis of aromas in the wine. The aim of this work was to evaluate the long-term effect of a grass cover crop on grape and wine quality.

Material and methods – The study was conducted in a cv. Chardonnay vineyard located in Otazu (Navarra, Spain). During the 10 years prior to the experiment, the vineyard had been managed with a Festuca arundinacea and Lolium rigidum cover crop. In order to evaluate its incidence, at the beginning of the experiment, part of the rows were tilled, and the agronomic and oenological performance of both soil management strategies compared, with a detailed evaluation of the effects on must and wine amino acids.

Results – After 5 years of evaluation, the presence of the cover crop was shown not to affect yield, cluster number or berry weight, but it decreased pruning wood weight and leaf nitrogen content. Regarding grape composition, no differences were observed in terms of sugar content, pH and titratable acidity but covercropped vines produced grapes with lower yeast assimilable nitrogen and amino acid

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Javier ABAD1,2*, Félix CIBRIÁIN3, Luis G. SANTESTEBAN2, Diana MARÍN2, Ana SAGÜÉS3

INTIA, Edificio de Peritos Avda. Serapio Huici nº 22, 31610, Villava, Spain
Dpt. Agronomy, Biotechnology and Food Science, Univ. P. de Navarra, Campus Arrosadia, 31006 Pamplona, Spain
Sección de Viticultura y Enología, Gobierno de Navarra, C/Valle de Orba nº34, 31390, Olite, Spain

Contact the author

Keywords

amino acids, wine, tillage, Vitis vinifera L.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

NIR spectroscopy as a contacless rapid tool to estimate the amino acids profile in intact grape berries

Nitrogen composition of grape berries plays a key role in determining wine quality, affecting the development of alcoholic fermentation and the formation of volatile compounds. Grape nitrogen composition is influenced by several factors such as viticultural practices, soil management, timing or rate of fertilization and use of rootstock, among others.In this study a proximal, non-destructive tool based on NIR spectroscopy is presented to track the accumulation of a wide range of amino acids in intact grape berries during the ripening process.

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.

Effectiveness of “curettage” and rootstock over-grafting in the control of esca

Context and purpose of the study. The grapevine domestication requested the need of pruning, which expose the vines to trunk pathogens, leading to the spread of vine trunk diseases.

Response of different grapevine cultivars to water stress using a hydroscape approach

Viticulture worldwide is currently affected by the effects of climate change. This set of adverse phenomena lead to a deterioration of functional vine mechanisms, affecting growth, physiology and grape ripening, which may cause severe losses with respect to yield and quality. To prevent water stress and other abiotic factors from severely affecting its physiology, the vine’s response is to reduce transpiration and photosynthesis rates. This response varies depending on the cultivar and its ability to adapt to the environment. The hydroscape method is based on the internal regulation of water status in the plant. It has been recently used to classify grapevine genotypes according to their iso/anisohydric behavior when they are subjected to water stress conditions.

Varietal thiol precursors in Trebbiano di Lugana grape and must

Trebbiano di Lugana (TdL) is a white variety of Vitis vinifera mainly cultivated in an Italian area located south near Garda lake (Verona, north of Italy). This grape cultivar, also known as “Turbiana,” is used for the production of TdL wine with recognized Protected Designation of Origin whose volatile profile was recently determined [1]. The presence of varietal thiols in TdL, namely 3-mercaptohexan-1-ol and its acetate form, conferring the tropical and citrus notes, has been documented. Winemaking strategies were also described with the purpose of protecting and maintain these desired aromas [2]. To the best of our knowledge, the varietal thiol precursors (VTPs) were not previously determined in TdL grape and must. This study aimed to quantify VTPs in both grape during the ripening and must during the pressing. Volatile C6 compounds were also measured in the must fractions.