GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Abstract

Context and purpose of the study – Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae. Typical symptoms in red cultivars include red blotches in leaves of afflicted vines with pinkish red-colored veins without any rolling of the margins observed at the onset of ripening. The objective of this study was to determine as to how the virus enters grapevine and once it enters the vine, how it is distributed throughout the vine.

Material and methods – During the growing season, vine samples were collected from vineyards with a history of Red Blotch (both red and white cultivars) located in Napa/Sonoma counties and the state of Washington. Starting at flowering, shoots (leaf and stem tissues) were sampled for microscopy analysis. These samples were used to determine the structure and functionality of the vascular strands (xylem and phloem) using callose specific dye, aniline blue and various techniques of microscopy.

Results – The afflicted fruits were high in acid but low in sugars causing delay in harvest. Canematuration was poor as evident from uneven browning characterized by areas of green and brown color. Typically, green stems fail to turn brown when the periderm is not formed indicating that the GRBaV interferes with cane maturation process. Callose (a carbohydrate substance) accumulated in the phloem cells of afflicted vines. Such deposition indicated that the GRBaV is primarily confined to phloem sieve tubes. Since callose deposits limit pathogen dispersal, this phenomenon could be used as a diagnostic indication of Red Blotch. Similarly, in the context of vascular blockage, the xylem vessels of afflicted canes showed tylosis, which is ballooning of neighboring xylem parenchyma cells into the lumen of the vessels. These observations indicated that even though the GRBaV enters grapevine via the phloem, both xylem and phloem responded to the virus invasion. This is an interesting observation and needs further investigation as tylosis typically occurs only when the xylem is injured either by pruning or occluded with bacteria. Vessels of healthy canes remained free of tylose. These results added a new dimension to viral diseases, especially Red Blotch and might provide a framework for developing management strategies to minimize the incidence of Red Blotch in grape growing regions worldwide.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Bhaskar BONDADA1*, Paul SKINNER2, Marc FUCHS3, and Andrew WALKER4

1 Washington State University, Richland, WA 99354, USA
2 Vineyard Investigations, St. Helena, CA 94574, USA
3 Cornell University, Geneva, NY 14456, USA
4 University of California, Davis, CA 95616, USA

Contact the author

Keywords

callose, grapevine, phloem, red blotch, tylosis, xylem

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

Cartographie des terroirs viticoles: valorisation des résultats par un logiciel de consultation dynamique de cartes

Pour son travail de cartographie et de caractérisation des terroirs, la Cellule Terroirs Viticoles utilise la méthode développée par l’Unité Vigne et Vin du Centre INRA d’Angers. Cette méthode reconnue au niveau international est appliquée dans les vignobles du Val de Loire à l’échelle du 1/10 000e et est valorisée par des éditions d’Atlas Viticoles à destination des viticulteurs et des organismes techniques.

Grapevine nitrogen status: correlation between chlorophyll indices n-tester and spadGrapevine nitrogen status

Knowledge of the nitrogen nutrition status of grapevines is essential for the sustainable management of their nutrition for the production of quality grapes. The measurement of the chlorophyll index is a rapid, non-destructive and relatively inexpensive method that provides a good approximation of the nitrogen nutrition status of the vine during the season. Interpretation thresholds are currently insufficient or non-existent for some chlorophyll meters. Ideally, they should be available for each variety and each phenological stage. In order to popularize the use of chlorophyll-meters, measurements were carried out at Agroscope in Switzerland to establish the correlation between the indices obtained by the devices N-tester and SPAD 502.

Moderated consumption of alcoholic beverages and cancer risk

One on three cases of cancer is associated with lifestyle and nutritional patterns, and the excessive intake of alcoholic beverages is a well established risk factor. Moderate drinking has been associated with reduced or increased risk of various types of cancer, but the clinical relevance of the risk rates has not been evaluated in ad hoc prospective investigations.

What do we know about the kerosene/petrol aroma in riesling wines?

1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is a controversial aroma component found in Riesling wines. It belongs to the family of C13-norisoprenoids and is mainly associated with kerosene/petrol notes. TDN can add complexity to the wine aroma at medium – low concentrations and deteriorate the wine bouquet when its content is high. No TDN aromas are usually perceived in young Riesling wines, but they can appear after several years of aging due to the gradual formation of TDN. Management of TDN in Riesling wines is an actual task, since global warming can promote formation of this compound and compromise the aromatic composition of wine. Therefore, the aim of the current work was, firstly, to study the sensory particularities of TDN in Riesling wine at various concentrations. Secondly, to investigate the ability of bottle closures to absorb (scalp) TDN from Riesling wine under various storage conditions. These studies also include the comparative assessment of our findings with previously published data. METHODS: sensory analysis, GC-MS (SBSE), HPLC,1H-NMR and other methods related to the synthesis and determination of TDN. RESULTS: First of all, the method of the synthesis of highly purified TDN (95% and 99.5%) was optimized [1].