GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Abstract

Context and purpose of the study – Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae. Typical symptoms in red cultivars include red blotches in leaves of afflicted vines with pinkish red-colored veins without any rolling of the margins observed at the onset of ripening. The objective of this study was to determine as to how the virus enters grapevine and once it enters the vine, how it is distributed throughout the vine.

Material and methods – During the growing season, vine samples were collected from vineyards with a history of Red Blotch (both red and white cultivars) located in Napa/Sonoma counties and the state of Washington. Starting at flowering, shoots (leaf and stem tissues) were sampled for microscopy analysis. These samples were used to determine the structure and functionality of the vascular strands (xylem and phloem) using callose specific dye, aniline blue and various techniques of microscopy.

Results – The afflicted fruits were high in acid but low in sugars causing delay in harvest. Canematuration was poor as evident from uneven browning characterized by areas of green and brown color. Typically, green stems fail to turn brown when the periderm is not formed indicating that the GRBaV interferes with cane maturation process. Callose (a carbohydrate substance) accumulated in the phloem cells of afflicted vines. Such deposition indicated that the GRBaV is primarily confined to phloem sieve tubes. Since callose deposits limit pathogen dispersal, this phenomenon could be used as a diagnostic indication of Red Blotch. Similarly, in the context of vascular blockage, the xylem vessels of afflicted canes showed tylosis, which is ballooning of neighboring xylem parenchyma cells into the lumen of the vessels. These observations indicated that even though the GRBaV enters grapevine via the phloem, both xylem and phloem responded to the virus invasion. This is an interesting observation and needs further investigation as tylosis typically occurs only when the xylem is injured either by pruning or occluded with bacteria. Vessels of healthy canes remained free of tylose. These results added a new dimension to viral diseases, especially Red Blotch and might provide a framework for developing management strategies to minimize the incidence of Red Blotch in grape growing regions worldwide.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Bhaskar BONDADA1*, Paul SKINNER2, Marc FUCHS3, and Andrew WALKER4

1 Washington State University, Richland, WA 99354, USA
2 Vineyard Investigations, St. Helena, CA 94574, USA
3 Cornell University, Geneva, NY 14456, USA
4 University of California, Davis, CA 95616, USA

Contact the author

Keywords

callose, grapevine, phloem, red blotch, tylosis, xylem

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

NAVIC–20 years of a lean management model for wine business R&D

Considering That Innovation Supports A Company’s Competitive Advantage And Drive Higher Profits (Dogru A. & Peyrette J., 2022), A Key Challenge Of Wine Companies Is Getting Practitioners To Understand That Innovation-Related Wine Research Increases The Likelihood Of Competitive Advantage, Bringing Financial Success. A Continued And Enhanced Investment In Research Is, Thus, A Prerequisite For Commercial Success In Today’s Globalized And Competitive Wine Industry (Høj P., Pretorius I.S., & Day R., 2003).

Sorption of aroma compounds by commercial specific yeast derivatives and the influence of polyphenols

Specific inactivated yeast derivatives (SYDs) from S. cerevisiae are obtained through thermal, mechanical, and enzymatic processes and are used to enhance wine quality.

Characteristics of some Montefalco Sagrantino vineyards through polyphenolic components

Characteristics related to the climate and the soil of Montefalco in the centre of Italy have been defined in order to evaluate their influence on the red cv.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Predicting consumers’ organic wine consumption behaviour

Organic wine production and consumption is one of the sustainable practices contributing to a number of sustainable development goals (SDGs).