GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Abstract

Context and purpose of the study – Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae. Typical symptoms in red cultivars include red blotches in leaves of afflicted vines with pinkish red-colored veins without any rolling of the margins observed at the onset of ripening. The objective of this study was to determine as to how the virus enters grapevine and once it enters the vine, how it is distributed throughout the vine.

Material and methods – During the growing season, vine samples were collected from vineyards with a history of Red Blotch (both red and white cultivars) located in Napa/Sonoma counties and the state of Washington. Starting at flowering, shoots (leaf and stem tissues) were sampled for microscopy analysis. These samples were used to determine the structure and functionality of the vascular strands (xylem and phloem) using callose specific dye, aniline blue and various techniques of microscopy.

Results – The afflicted fruits were high in acid but low in sugars causing delay in harvest. Canematuration was poor as evident from uneven browning characterized by areas of green and brown color. Typically, green stems fail to turn brown when the periderm is not formed indicating that the GRBaV interferes with cane maturation process. Callose (a carbohydrate substance) accumulated in the phloem cells of afflicted vines. Such deposition indicated that the GRBaV is primarily confined to phloem sieve tubes. Since callose deposits limit pathogen dispersal, this phenomenon could be used as a diagnostic indication of Red Blotch. Similarly, in the context of vascular blockage, the xylem vessels of afflicted canes showed tylosis, which is ballooning of neighboring xylem parenchyma cells into the lumen of the vessels. These observations indicated that even though the GRBaV enters grapevine via the phloem, both xylem and phloem responded to the virus invasion. This is an interesting observation and needs further investigation as tylosis typically occurs only when the xylem is injured either by pruning or occluded with bacteria. Vessels of healthy canes remained free of tylose. These results added a new dimension to viral diseases, especially Red Blotch and might provide a framework for developing management strategies to minimize the incidence of Red Blotch in grape growing regions worldwide.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Bhaskar BONDADA1*, Paul SKINNER2, Marc FUCHS3, and Andrew WALKER4

1 Washington State University, Richland, WA 99354, USA
2 Vineyard Investigations, St. Helena, CA 94574, USA
3 Cornell University, Geneva, NY 14456, USA
4 University of California, Davis, CA 95616, USA

Contact the author

Keywords

callose, grapevine, phloem, red blotch, tylosis, xylem

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Solid Rectified Concentrated grape Must (SRCM) in sparkling wines production: studying the sensory impact of an innovative sugar substrate

The production of sparkling wines requires sugars for the second fermentation. The Solid Rectified Concentrated Must (SRCM) is a water free crystalline form of grape sugar, offering a purer, more stable, and easier-to-use alternative to the liquid Rectified Concentrated Must (RCM).

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

Diversificazione e valorizzazione di produzioni tipiche sul territorio: I cesanesi

The zone in which the Cesanese vines are cultivated has a secular tradition of red wine­making. This zone is placed between the Simbruini mountains slopes and the surrounding hills and has pedologicai variability but a very homogeneous microclimate.