GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Abstract

Context and purpose of the study – Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae. Typical symptoms in red cultivars include red blotches in leaves of afflicted vines with pinkish red-colored veins without any rolling of the margins observed at the onset of ripening. The objective of this study was to determine as to how the virus enters grapevine and once it enters the vine, how it is distributed throughout the vine.

Material and methods – During the growing season, vine samples were collected from vineyards with a history of Red Blotch (both red and white cultivars) located in Napa/Sonoma counties and the state of Washington. Starting at flowering, shoots (leaf and stem tissues) were sampled for microscopy analysis. These samples were used to determine the structure and functionality of the vascular strands (xylem and phloem) using callose specific dye, aniline blue and various techniques of microscopy.

Results – The afflicted fruits were high in acid but low in sugars causing delay in harvest. Canematuration was poor as evident from uneven browning characterized by areas of green and brown color. Typically, green stems fail to turn brown when the periderm is not formed indicating that the GRBaV interferes with cane maturation process. Callose (a carbohydrate substance) accumulated in the phloem cells of afflicted vines. Such deposition indicated that the GRBaV is primarily confined to phloem sieve tubes. Since callose deposits limit pathogen dispersal, this phenomenon could be used as a diagnostic indication of Red Blotch. Similarly, in the context of vascular blockage, the xylem vessels of afflicted canes showed tylosis, which is ballooning of neighboring xylem parenchyma cells into the lumen of the vessels. These observations indicated that even though the GRBaV enters grapevine via the phloem, both xylem and phloem responded to the virus invasion. This is an interesting observation and needs further investigation as tylosis typically occurs only when the xylem is injured either by pruning or occluded with bacteria. Vessels of healthy canes remained free of tylose. These results added a new dimension to viral diseases, especially Red Blotch and might provide a framework for developing management strategies to minimize the incidence of Red Blotch in grape growing regions worldwide.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Bhaskar BONDADA1*, Paul SKINNER2, Marc FUCHS3, and Andrew WALKER4

1 Washington State University, Richland, WA 99354, USA
2 Vineyard Investigations, St. Helena, CA 94574, USA
3 Cornell University, Geneva, NY 14456, USA
4 University of California, Davis, CA 95616, USA

Contact the author

Keywords

callose, grapevine, phloem, red blotch, tylosis, xylem

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Typicality of Rioja wines: identification of sensory profiles for the three subregions of DOCa Rioja

Within the DOCa Rioja three main production areas are differentiated: Rioja Alta (RA), Rioja Alavesa (RAv) and Rioja Oriental (RO). They are three diverse territories with particular characteristics that are claimed to give rise to differentiated profiles. The present work aims at evaluating the sensory diversity of young commercial red wines in these three subregions. Therefore 30 young red wines (mainly Tempranillo and vintage 2021), ten from each subregion, were sensory described following a non-verbal free sorting task and a verbal free comment task by 32 well-established Rioja winemakers.

Parcours de découverte des terroirs viticoles

A partir des recherches conduites sur la caractérisation des terroirs viticoles par des chercheurs de l’Unité de Recherches Vigne et Vin (1, 2, 3, 4, 5) du Centre INRA d’Angers, Terre des Sciences, le Centre de Culture Scientifique et Technique d’Angers (CCSTA) a mis au point un parcours de découverte d’une journée dans le vignoble angevin avec une approche pluridisciplinaire.

Chemical and colorimetric study of copigmentation between malvidin-3-O-glucoside and wine polyphenols and polysaccharides

The objective of this work was to perform a colorimetric study of the copigmentation between malvidin-3-O-glucoside, one of the main anthocyanins in red wines,

Clustering wine aromatic composition of Vitis vinifera grapevine varieties

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Amongst several changes in viticultural practices, replacing some of the planting material (i.e clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity.

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).