GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Rootstock differences in soil-water uptake during drying-wetting cycles imaged with 3d electrical resistivity tomography

Rootstock differences in soil-water uptake during drying-wetting cycles imaged with 3d electrical resistivity tomography

Abstract

Context and purpose of the study – Limited knowledge has been acquired on grapevine roots and rhizosphere processes because of harder access when compared to aerial parts. There is need for new methods to study root behavior in undisturbed field conditions, and relate these effects on canopy and yield. The aim of this multidisciplinary study was to image and quantify spatial-temporal differences in soil-water uptake by genetically different rootstocks and to assess the response of the canopy during drought and rewetting.

Material and methods – During two years, three replicates of 10 plants of Chardonnay, 5 plants grafted onto 110R and 5 on 101-14 Mgt, were monitored in a drip-irrigated experimental vineyard. Each experimental unit was equipped with time-domain reflecrometer sensors for continuous measurement of soil water and with stainless-steel rods and micro-borehole electrodes for time-lapse 2D and 3D electrical resistivity tomography (ERT). The soil profile was described with soil pits at both ends of the experimental units and sampled for physical-chemical analysis. Grapevine water status of each vine was monitored routinely with 3h-lag diurnal cycles of water potentials and leaf gas-exchanges (from predawn to following night) and δ13C at harvest. Light and Ci photosynthesis response curves, predawn Fv/Fm were measured under dry and wet conditions. Grape composition, yield components and pruning-weights were also measured.

Results – Different models were tested to develop a pedotransfer function and transform electrical resistivity into soil volume wetness. Due to the sandy nature of the soil the Archie law performed well and was used to map water depletion in 3D with an error of 1.2 %vol., R2 = 0.73 (measured on an independent test set). Before rewetting the grapevine experienced severe drought stress in both years of the study (< – 10MPa in predawn), and amount of soil water per vine was significantly correlated to single plant water potentials and to canopy size. One fold differences in the amount of soil water absorbed by the two rootstocks were reached at the end of the drought period, with distinct spatial patterns. The 110R was more conservative, and soil depletion was localized in space around each vines, while the 101-14 was less conservative and more homogenously and deeply depleted the soil profile affecting whole plant water status and leaf physiology that was more depressed. Replenishment of the fraction of transpired soil water by drip irrigation was imaged by time-lapse ERT, and differences were observed in the reaction to rewetting by the two rootstocks.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Luca BRILLANTE1*, M. Andrew WALKER2, Andrew J. McELRONE2, 3, S. Kaan KURTURAL2

Dep. of Viticulture and Enology, California State University, Fresno, CA 93740, USA
Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
USDA-Agricultural Research Service, Davis, CA 95616, USA

Contact the author

Keywords

grapevine, rootstocks, Electrical Resistivity Tomography ERT, water stress, soil water, drought, drip irrigation

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Assessing bunch architecture for grapevine yield forecasting by image analysis 

It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages.

Enhancing vineyard resilience: evaluating sustainable practices in the Douro demarcated region

In mediterranean agriculture, sustainability and productivity are seriously threatened by climate change and water scarcity. This situation is exacerbated by poor management practices such as excessive use of agrochemicals, overgrazing, and monoculture. The Douro demarcated region (ddr) is an emblematic region, classified world heritage site by UNESCO in 2001. Viticulture is the main agricultural activity in DDR, widely known to produce port wine.

AOC Saint-Romain, Hautes-Côtes-de-Beaune, Burgundy: analysis of a “terroir”

The abbreviation AOC designates, since 1905 in France, wines which characteristics and reputation are due to a proper “terroir”. The delimitation of such “terroirs” consists in a technical and statutory procedure which has developed by steps.

Impact of toasting on oak wood aroma: creation of an oak wood aroma wheel

The impact of toasting process to produce aroma from oak wood intrinsic composition is well documented. It is admitted that such complexity contribute to the wine quality after barrel ageing. Despite our knowledge on the molecular identification of aroma impact compounds of oak wood, little research have been carried out, on a sensory level, on the aroma diversity of toasted oak wood.

Impact of microclimate on berry quality parameters of white Riesling (Vitis vinifera L.)

Knowledge has been accumulated on the impact of microclimate, in particular berry temperature and irradiation, for a wide range of red varieties. However, little research has been dedicated on the effects of the same factors on the quality of white grape varieties.