Terroir 2020 banner
IVES 9 IVES Conference Series 9 Intraregional profiles of varietal thiols and precursors in Sauvignon Blanc juices and wines from the Adelaide Hills

Intraregional profiles of varietal thiols and precursors in Sauvignon Blanc juices and wines from the Adelaide Hills

Abstract

Aims: To investigate the intraregional variation of varietal thiol precursors and free thiols in Sauvignon blanc grape juices and experimental wines arising from the Adelaide Hills Geographical Indication (GI) in South Australia.

Methods and ResultsVitis vinifera L. cv Sauvignon blanc grape parcels (n = 21, approx. 8 kg each, encompassing 5 clones) were hand harvested from different blocks within seven commercial vineyards in the Adelaide Hills GI during the 2018 vintage. Parcels were divided into subsets for winemaking and freezing experiments. Amino acid (AA) and thiol precursor concentrations in juice were determined using high performance liquid chromatography (HPLC) with fluorescence detection and stable isotope dilution assay (SIDA) using HPLC with tandem mass spectrometry (MS/MS), respectively, and free thiols in wine were quantified by SIDA with HPLC-MS/MS, after derivatisation with 4,4’-dithiodipyridine. Intraregional variations in grape ripeness were evident according to total soluble solids content, pH, and titratable acidity, even within single locations or for the same clones. Significant differences in the glutathionylated precursor to 3-sulfanylhexan-1-ol (3-SH) were found among several locations whereas for the cysteinylated variant of 3-SH, one location was distinct from the rest. Variation in precursor concentrations was also noted from different blocks within a single vineyard location but was not dependent on grape ripeness. Fermentations progressed without any obvious relationship to location, and wines that were high in 3-SH were also usually high in 3-sulfanylhexyl acetate (3-SHA). One location had significantly higher levels of thiols in wine despite the juice not being the highest for grape-derived precursors, and also gave a substantial concentration of 4-methyl-4-sulfanylpentan-2-one in comparison to other locations within the GI. The AA profile of juices was found to vary according to location, and certain AAs were strongly correlated to thiol precursor concentrations, but relationships of AAs with free thiols in wine were generally weak. Additionally, enhancements in the concentrations of precursors in juice (up to 19-fold) and free thiols in wine (up to 10-fold) were revealed from freezing whole grape bunches in contrast to using fresh juice.

Conclusions: 

Intraregional variation was noted for thiols in wine, and precursors and amino acids in juice, for 21 Sauvignon blanc samples collected from within the Adelaide Hills region. The effects of terroir were implicated in explaining the differences in grape composition, and the potential interactions among grape amino acids and thiol precursors in berries and thiols in wine were revealed.

Significance and Impact of the Study: Sauvignon blanc is a significant variety produced in the Adelaide Hills GI but no information was available on the effects of location within the GI on grape and wine composition with respect to varietal thiols. This was the first study of intraregional variations of thiol precursors, amino acids, and free thiols in Sauvignon blanc juices and wines that were produced in a consistent manner. A remarkable enhancing effect of freezing was noted for thiol precursors in juice, and importantly, free thiols in wine.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Liang Chen1,a, Dimitra L. Capone1,2, Emily L. Nicholson3, David W. Jeffery1,2*

1 School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1 Glen Osmond, SA 5064, Australia
2 Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia
3 CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA 5064, Australia

aPresent address: Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, 210 chemin de Leysotte CS 50008, 33882 Villenave d’Ornon Cedex, France

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Characterization of winegrape berries’ composition on sorting tables using hyperspectral imaging and AI

Comprehensive evaluation of grape composition at winery receiving areas often requires multiple measurements to ensure representativeness, as well as the use of analytical techniques that are time-consuming and involve sample preparation.

Polysaccharides and glycerol production by non-Saccharomyces wine yeasts in mixed fermentation

A great variability in the amount of polysaccharides recovered at the end of fermentations carried out by pure cultures of 89 non-Saccharomyces yeasts was observed. The utilization of the best polysaccharides producers in mixed cultures with S. cerevisiae resulted in considerable increases in the final concentration of polysaccharides and showed a strain dependent effect on glycerol production as compared to pure culture of S. cerevisiae.

Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

AIM: The use of non-Saccharomyces (NS) yeasts in multi-starter fermentations with S. cerevisiae is a trend in the wine industry, but the number of strains commercially available in a powder formulation, such as active dry yeasts (ADY), is still limited.

Characterizing chemical influences of smoke on wine via novel application of 13c-labelled smoke

Smoke impact is an ongoing and growing issue for vintners across the globe, with the west coast of the U.S. and Australia being two of the largest wine industries impacted. Wine has shown to be especially sensitive to smoke exposure, often acquiring off-flavor sensory characteristics, such as “burnt rubber”, “ashy”, or other medicinal off-flavors.1 While several studies have examined the chemical composition of smoke influences on wine, some studies disagree on what compounds are having the largest impact on smell and flavor.2 This study is designed as a bottom-up approach to inventory the chemical compounds derived from smoke from a grassland-like fire that are potentially influencing wine chemical composition.

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.