Terroir 2020 banner
IVES 9 IVES Conference Series 9 Intraregional profiles of varietal thiols and precursors in Sauvignon Blanc juices and wines from the Adelaide Hills

Intraregional profiles of varietal thiols and precursors in Sauvignon Blanc juices and wines from the Adelaide Hills

Abstract

Aims: To investigate the intraregional variation of varietal thiol precursors and free thiols in Sauvignon blanc grape juices and experimental wines arising from the Adelaide Hills Geographical Indication (GI) in South Australia.

Methods and ResultsVitis vinifera L. cv Sauvignon blanc grape parcels (n = 21, approx. 8 kg each, encompassing 5 clones) were hand harvested from different blocks within seven commercial vineyards in the Adelaide Hills GI during the 2018 vintage. Parcels were divided into subsets for winemaking and freezing experiments. Amino acid (AA) and thiol precursor concentrations in juice were determined using high performance liquid chromatography (HPLC) with fluorescence detection and stable isotope dilution assay (SIDA) using HPLC with tandem mass spectrometry (MS/MS), respectively, and free thiols in wine were quantified by SIDA with HPLC-MS/MS, after derivatisation with 4,4’-dithiodipyridine. Intraregional variations in grape ripeness were evident according to total soluble solids content, pH, and titratable acidity, even within single locations or for the same clones. Significant differences in the glutathionylated precursor to 3-sulfanylhexan-1-ol (3-SH) were found among several locations whereas for the cysteinylated variant of 3-SH, one location was distinct from the rest. Variation in precursor concentrations was also noted from different blocks within a single vineyard location but was not dependent on grape ripeness. Fermentations progressed without any obvious relationship to location, and wines that were high in 3-SH were also usually high in 3-sulfanylhexyl acetate (3-SHA). One location had significantly higher levels of thiols in wine despite the juice not being the highest for grape-derived precursors, and also gave a substantial concentration of 4-methyl-4-sulfanylpentan-2-one in comparison to other locations within the GI. The AA profile of juices was found to vary according to location, and certain AAs were strongly correlated to thiol precursor concentrations, but relationships of AAs with free thiols in wine were generally weak. Additionally, enhancements in the concentrations of precursors in juice (up to 19-fold) and free thiols in wine (up to 10-fold) were revealed from freezing whole grape bunches in contrast to using fresh juice.

Conclusions: 

Intraregional variation was noted for thiols in wine, and precursors and amino acids in juice, for 21 Sauvignon blanc samples collected from within the Adelaide Hills region. The effects of terroir were implicated in explaining the differences in grape composition, and the potential interactions among grape amino acids and thiol precursors in berries and thiols in wine were revealed.

Significance and Impact of the Study: Sauvignon blanc is a significant variety produced in the Adelaide Hills GI but no information was available on the effects of location within the GI on grape and wine composition with respect to varietal thiols. This was the first study of intraregional variations of thiol precursors, amino acids, and free thiols in Sauvignon blanc juices and wines that were produced in a consistent manner. A remarkable enhancing effect of freezing was noted for thiol precursors in juice, and importantly, free thiols in wine.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Liang Chen1,a, Dimitra L. Capone1,2, Emily L. Nicholson3, David W. Jeffery1,2*

1 School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1 Glen Osmond, SA 5064, Australia
2 Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia
3 CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA 5064, Australia

aPresent address: Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, 210 chemin de Leysotte CS 50008, 33882 Villenave d’Ornon Cedex, France

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Vineyard soils and landscapes of the Burgundy Côte (France): a historical construction worth preserving

The construction of vineyard landscapes along the Burgundy Côte is the result of geological processes and of human labour. Substratum diversity in this vineyard is the result of a very long history explained by the diversity of Jurassic sedimentary facies and Tertiary tectonic activity. The nature and thickness of Quaternary deposits (Weichselian scree debris and alluvial fans) reflect sediment dynamics concurrent with the last glaciation.

AOC valorization of terroir nuances at plot scale in Burgundy

In the highly competitive global wine market, Burgundy has a long-established reputation to maintain. The vine and wine sector in Burgundy is based on a five-level ranking of AOC (Appellation d’Origine Contrôlée) wines and of the plots where the grapes are grown.

The revision of the delimitation of the AOC “Champagne”

The Champagne vine-growing region has played a pioneering role in the delimitation of appellations of origin (AOC). The implementation of the Act of July, 22nd 1927 has led to drawing up lists of vine plots based on the criterion of vine cultivation antecedence.

Building of a hierarchy of wines based on terroirs: an initiative from the producers of Muscadet

The Muscadet area is situated in the southeast of Nantes, close to the Atlantic coast. It constitutes the western extension
of the French vineyard “Loire Valley”. The Muscadet is renowned and often spontaneously linked to a white wine.
However it remains misconceived as an ordinary wine, lacking authenticity.

How the physical components of the terroir can differently intervene in French wines DPO definitions.Example of Côte de Nuits in Burgundy

European regulations describe what elements must be given in the specifications of DPO determination ; mainly production conditions, links between quality and products characteristics and the physical traits of the production area. These elements are given in the “link to terroir” paragraph relating natural and human factors, detailed product characteristics linked to the geographical area and at last interactions between product originality and the geographical area.