GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Metabolic fingerprinting and qualitative attributes of two indigenous Cypriot cultivars destined for the production of ‘commandaria’: the impact of leaf removal and dehydration process

Metabolic fingerprinting and qualitative attributes of two indigenous Cypriot cultivars destined for the production of ‘commandaria’: the impact of leaf removal and dehydration process

Abstract

Context and purpose of the study – Grapes’ sun-drying is one of the most critical steps in the production of ‘Commandaria’, a dessert wine with Protected Designation of Origin that is exclusively produced in Cyprus from grapes of the two indigenous cultivars (Vitis vinifera L.), namely ‘Mavro’ and ‘Xynisteri’. Despite its significant economic importance, no data regarding the primary and secondary metabolites of the aforementioned cultivars exist.

Material and methods – Three interrelated experiments were performed. Initially, the effect of sun-drying on the composition of ‘Mavro’ and ‘Xynisteri’ musts was dissected. Musts were analyzed at harvest and at the end of the sun-drying. Thereafter, the effect of traditional sun-drying on the composition of ‘Xynisteri’ must was compared to four alternative dehydration methods [(a) multiple horizontal wires (MHW), (b) multiple vertical pallets (MVP), (c) low greenhouse (LGH) and (d) hot-air dryer treatment (HAD)]. Finally, the effect of leaf removal at veraison stage on the composition of must obtained from fresh and dehydrated grapes of both cultivars was evaluated.

Results – Significant differences in chemical composition of the musts before and after sun-drying were monitored under the first experiment. Except for the increase of soluble solids, a significant increment in titratable acidity, total phenols and total flavonoids was recorded due to condensation effect. Moreover, forty and forty two phenolic compounds were identified and quantified by LC-DAD-qTOF-MS in ‘Xynisteri and ‘Mavro’ must, respectively. Results alsoindicated significant changes in the phenolic composition of the obtained musts. As regard the second experiment, LGH and HAD, led to a significant reduction of the dehydration period. Taking into consideration that HAD cannot exploited under the existing legal framework, LGH showed the greatest potential. Furthermore, LGH protects the grapes against several factors such as rodents, birds, insects and rain incidents. At the third experiment, leaf removal led to a reduction of soluble solids, titratable acidity, aroma potential and most of the phenolic groups of musts of both cultivars. Dehydration led to a significant increase of the aforementioned parameters in both cultivars, being more pronounced in cv. ‘Mavro’. Overall, leaf removal indicated differential response in the dehydrated product based on the cultivar considered.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Savvas CONSTANTINOU1, Ana Maria GOMEZ-CARAVACA2, Vlasios GOULAS1, Antonio SEGURA-CARRETERO2, Alberto FERNANDEZ-GUITIERREZ2, Stefanos KOUNDOURAS3, George A. MANGANARIS1*

Presenting author

1 Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology and Food Science, 3603 Lemesos, Cyprus
2 Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain
3 Aristotle University of Thessaloniki, School of Agricultural, 54124 Thessaloniki, Greece

Contact the author

Keywords

‘Xynisteri’, ‘Mavro’, sun-drying, commandaria, LC-DAD-qTOF-MS

Tags

Citation

Related articles…

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

Identification and formation kinetic study of phenolic compounds-volatile thiols adducts by enzymatic oxidation

By using HPLC-ESI-MS, 1H, 13C and 2D NMR, new addition products between catechin, epicatechin, caftaric acid and 3SH were characterized. Caftaric acid formed more rapidly adducts with 3SH than catechin and epicatechin in the absence of other nucleophiles.

Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Climate change impacts water availability for agriculture, notably in semi-arid regions like South Africa, necessitating research on cultivar and rootstock adaptability to water constraints. To evaluate the performance (vegetative and reproductive) of different Chenin Blanc-rootstock combinations to the two water regimes, a field experiment was established in a model vineyard at Stellenbosch University, South Africa. Chenin Blanc vines grafted onto four different rootstocks (110Richter, 99Richter, 1103Paulsen and US 8-7) were planted in 2020. The vines are managed under two contrasting water conditions – dryland and irrigated (industry norm).

Unraveling grapevine resilience to water and nutrient limitations

Water and nutrient availability significantly impact crop yield, thus the application of sustainable strategies towards efficient water use and nutrient absorption by plants is needed.

Piloting grape ripening in a global warming scenario: feasible techniques are available

Under the pressure of global warming, several wine grape growing regions around the world are increasingly suffering from advanced and compressed phenology; endangering wine character while also creating serious logistic problems. From a physiological standpoint, the issue of delaying ripening is not simple as, in several instances, only a few processes must be delayed (i.e. sugar accumulation into the berries) while other events such as pigmentation and accumulation of other important phenolic compounds should proceed at a normal rate. Thus, the issue of decoupling technological maturity from phenolic maturity is another important consideration. Over the last decades, several research groups have endeavored to establish alternate cultural practices aimed at addressing this decoupling. In some cases, special applications of quite robust and well known practices regarding physiological principles have been utilized, however some completely new techniques are also being studied. In figure 1 of the review, we offer a panorama of the available tools and in the text we elaborate on those having provided most reliable and consistent results under an array of genotypes and environmental conditions. Among these, primary focus is given to post‐veraison—apical to the cluster—leaf removal (that can also be suitably replaced by applications of anti‐transpirants); the use of kaolin against multiple summers’ stresses; and a drastic version of late winter pruning having the potential to postpone ripening into a cooler period with improved grape composition and a limited negative impact on yield and storage reserves replenishment.