GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Metabolic fingerprinting and qualitative attributes of two indigenous Cypriot cultivars destined for the production of ‘commandaria’: the impact of leaf removal and dehydration process

Metabolic fingerprinting and qualitative attributes of two indigenous Cypriot cultivars destined for the production of ‘commandaria’: the impact of leaf removal and dehydration process

Abstract

Context and purpose of the study – Grapes’ sun-drying is one of the most critical steps in the production of ‘Commandaria’, a dessert wine with Protected Designation of Origin that is exclusively produced in Cyprus from grapes of the two indigenous cultivars (Vitis vinifera L.), namely ‘Mavro’ and ‘Xynisteri’. Despite its significant economic importance, no data regarding the primary and secondary metabolites of the aforementioned cultivars exist.

Material and methods – Three interrelated experiments were performed. Initially, the effect of sun-drying on the composition of ‘Mavro’ and ‘Xynisteri’ musts was dissected. Musts were analyzed at harvest and at the end of the sun-drying. Thereafter, the effect of traditional sun-drying on the composition of ‘Xynisteri’ must was compared to four alternative dehydration methods [(a) multiple horizontal wires (MHW), (b) multiple vertical pallets (MVP), (c) low greenhouse (LGH) and (d) hot-air dryer treatment (HAD)]. Finally, the effect of leaf removal at veraison stage on the composition of must obtained from fresh and dehydrated grapes of both cultivars was evaluated.

Results – Significant differences in chemical composition of the musts before and after sun-drying were monitored under the first experiment. Except for the increase of soluble solids, a significant increment in titratable acidity, total phenols and total flavonoids was recorded due to condensation effect. Moreover, forty and forty two phenolic compounds were identified and quantified by LC-DAD-qTOF-MS in ‘Xynisteri and ‘Mavro’ must, respectively. Results alsoindicated significant changes in the phenolic composition of the obtained musts. As regard the second experiment, LGH and HAD, led to a significant reduction of the dehydration period. Taking into consideration that HAD cannot exploited under the existing legal framework, LGH showed the greatest potential. Furthermore, LGH protects the grapes against several factors such as rodents, birds, insects and rain incidents. At the third experiment, leaf removal led to a reduction of soluble solids, titratable acidity, aroma potential and most of the phenolic groups of musts of both cultivars. Dehydration led to a significant increase of the aforementioned parameters in both cultivars, being more pronounced in cv. ‘Mavro’. Overall, leaf removal indicated differential response in the dehydrated product based on the cultivar considered.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Savvas CONSTANTINOU1, Ana Maria GOMEZ-CARAVACA2, Vlasios GOULAS1, Antonio SEGURA-CARRETERO2, Alberto FERNANDEZ-GUITIERREZ2, Stefanos KOUNDOURAS3, George A. MANGANARIS1*

Presenting author

1 Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology and Food Science, 3603 Lemesos, Cyprus
2 Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain
3 Aristotle University of Thessaloniki, School of Agricultural, 54124 Thessaloniki, Greece

Contact the author

Keywords

‘Xynisteri’, ‘Mavro’, sun-drying, commandaria, LC-DAD-qTOF-MS

Tags

Citation

Related articles…

Innovative approaches in the evaluation of the spatial and temporal biodiversity of grape varieties from the Portuguese Bairrada appellation using LIMM-PCA: a study across five harvests

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard and wine ecosystems is required, as well as the varieties plasticity. Particular attention should be devoted to the spatial and temporal interactions between authorized or recommended varieties for a specific demarcated region and clime and vineyard conditions (such as soil type, orientation of the lines, age of the vine, density of planting, harvesting practices, among others).

Using RGB images and LiDAR data to characterise fruit-to-leaf ratios in grapevine collections

One of the main effects of global warming is an increase in the sugar concentration of grapes at harvest time, resulting in wines with a high alcohol content and an unbalanced structure. The fruit to leaf ratio is a key factor in determining the final sugar concentration, and training systems and management techniques can help to control this parameter.

Diversity of arbuscular mycorrhizal fungi on grapevine roots across an edaphoclimatic gradient

Challenges associated with climate change, such as soil erosion and drought, have impacted viticulture across wine regions globally in recent decades. As winegrowers struggle to maintain yield and quality standards under these conditions, methods to adapt to and mitigate the impacts of climate change have become more prevalent. One potential mitigation strategy is to enhance symbiotic interaction of grapevine roots with arbuscular mycorrhizal fungi (AMF).

1H-NMR-based Untargeted Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

Untargeted metabolomics has proven to be an effective method to study the impact of the terroir on metabolic profile of wines. In this context, the aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through 1H-NMR metabolomics combined with chemometrics.Grapes from Nero d’Avola L. red cultivar cultivated on four different soil types were separately vinified to obtain four different red wines.One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz