GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Metabolic fingerprinting and qualitative attributes of two indigenous Cypriot cultivars destined for the production of ‘commandaria’: the impact of leaf removal and dehydration process

Metabolic fingerprinting and qualitative attributes of two indigenous Cypriot cultivars destined for the production of ‘commandaria’: the impact of leaf removal and dehydration process

Abstract

Context and purpose of the study – Grapes’ sun-drying is one of the most critical steps in the production of ‘Commandaria’, a dessert wine with Protected Designation of Origin that is exclusively produced in Cyprus from grapes of the two indigenous cultivars (Vitis vinifera L.), namely ‘Mavro’ and ‘Xynisteri’. Despite its significant economic importance, no data regarding the primary and secondary metabolites of the aforementioned cultivars exist.

Material and methods – Three interrelated experiments were performed. Initially, the effect of sun-drying on the composition of ‘Mavro’ and ‘Xynisteri’ musts was dissected. Musts were analyzed at harvest and at the end of the sun-drying. Thereafter, the effect of traditional sun-drying on the composition of ‘Xynisteri’ must was compared to four alternative dehydration methods [(a) multiple horizontal wires (MHW), (b) multiple vertical pallets (MVP), (c) low greenhouse (LGH) and (d) hot-air dryer treatment (HAD)]. Finally, the effect of leaf removal at veraison stage on the composition of must obtained from fresh and dehydrated grapes of both cultivars was evaluated.

Results – Significant differences in chemical composition of the musts before and after sun-drying were monitored under the first experiment. Except for the increase of soluble solids, a significant increment in titratable acidity, total phenols and total flavonoids was recorded due to condensation effect. Moreover, forty and forty two phenolic compounds were identified and quantified by LC-DAD-qTOF-MS in ‘Xynisteri and ‘Mavro’ must, respectively. Results alsoindicated significant changes in the phenolic composition of the obtained musts. As regard the second experiment, LGH and HAD, led to a significant reduction of the dehydration period. Taking into consideration that HAD cannot exploited under the existing legal framework, LGH showed the greatest potential. Furthermore, LGH protects the grapes against several factors such as rodents, birds, insects and rain incidents. At the third experiment, leaf removal led to a reduction of soluble solids, titratable acidity, aroma potential and most of the phenolic groups of musts of both cultivars. Dehydration led to a significant increase of the aforementioned parameters in both cultivars, being more pronounced in cv. ‘Mavro’. Overall, leaf removal indicated differential response in the dehydrated product based on the cultivar considered.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Savvas CONSTANTINOU1, Ana Maria GOMEZ-CARAVACA2, Vlasios GOULAS1, Antonio SEGURA-CARRETERO2, Alberto FERNANDEZ-GUITIERREZ2, Stefanos KOUNDOURAS3, George A. MANGANARIS1*

Presenting author

1 Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology and Food Science, 3603 Lemesos, Cyprus
2 Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain
3 Aristotle University of Thessaloniki, School of Agricultural, 54124 Thessaloniki, Greece

Contact the author

Keywords

‘Xynisteri’, ‘Mavro’, sun-drying, commandaria, LC-DAD-qTOF-MS

Tags

Citation

Related articles…

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.

First disclosure of eugenol precursors in Vitis genus: analytical development and quantification

The main aim of this work was to develop an analytical method to disclosure the
molecular form of eugenol precursor. Indeed eugenol is an important contributor to
Armagnac spirits typicity made with Baco blanc.

Characterisation of viticultural and oenological practices in two French AOC in the middle Loire Valley: comparison of different methods to extract information from a survey among winegrowers

The type of wine is determined by environmental, plant materials and human factors. These factors are numerous and interact together, which makes it difficult to determine the hierarchy of their effects

Disentangling the sources of variation in stomatal regulation in field-grown cultivar-rootstock combinations

The inherent variability of Nature poses challenges for researchers to draw clear conclusions from field experiments. Identifying and assessing adaptations to climate change requires agronomic field trials.

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).