GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Metabolic fingerprinting and qualitative attributes of two indigenous Cypriot cultivars destined for the production of ‘commandaria’: the impact of leaf removal and dehydration process

Metabolic fingerprinting and qualitative attributes of two indigenous Cypriot cultivars destined for the production of ‘commandaria’: the impact of leaf removal and dehydration process

Abstract

Context and purpose of the study – Grapes’ sun-drying is one of the most critical steps in the production of ‘Commandaria’, a dessert wine with Protected Designation of Origin that is exclusively produced in Cyprus from grapes of the two indigenous cultivars (Vitis vinifera L.), namely ‘Mavro’ and ‘Xynisteri’. Despite its significant economic importance, no data regarding the primary and secondary metabolites of the aforementioned cultivars exist.

Material and methods – Three interrelated experiments were performed. Initially, the effect of sun-drying on the composition of ‘Mavro’ and ‘Xynisteri’ musts was dissected. Musts were analyzed at harvest and at the end of the sun-drying. Thereafter, the effect of traditional sun-drying on the composition of ‘Xynisteri’ must was compared to four alternative dehydration methods [(a) multiple horizontal wires (MHW), (b) multiple vertical pallets (MVP), (c) low greenhouse (LGH) and (d) hot-air dryer treatment (HAD)]. Finally, the effect of leaf removal at veraison stage on the composition of must obtained from fresh and dehydrated grapes of both cultivars was evaluated.

Results – Significant differences in chemical composition of the musts before and after sun-drying were monitored under the first experiment. Except for the increase of soluble solids, a significant increment in titratable acidity, total phenols and total flavonoids was recorded due to condensation effect. Moreover, forty and forty two phenolic compounds were identified and quantified by LC-DAD-qTOF-MS in ‘Xynisteri and ‘Mavro’ must, respectively. Results alsoindicated significant changes in the phenolic composition of the obtained musts. As regard the second experiment, LGH and HAD, led to a significant reduction of the dehydration period. Taking into consideration that HAD cannot exploited under the existing legal framework, LGH showed the greatest potential. Furthermore, LGH protects the grapes against several factors such as rodents, birds, insects and rain incidents. At the third experiment, leaf removal led to a reduction of soluble solids, titratable acidity, aroma potential and most of the phenolic groups of musts of both cultivars. Dehydration led to a significant increase of the aforementioned parameters in both cultivars, being more pronounced in cv. ‘Mavro’. Overall, leaf removal indicated differential response in the dehydrated product based on the cultivar considered.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Savvas CONSTANTINOU1, Ana Maria GOMEZ-CARAVACA2, Vlasios GOULAS1, Antonio SEGURA-CARRETERO2, Alberto FERNANDEZ-GUITIERREZ2, Stefanos KOUNDOURAS3, George A. MANGANARIS1*

Presenting author

1 Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology and Food Science, 3603 Lemesos, Cyprus
2 Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain
3 Aristotle University of Thessaloniki, School of Agricultural, 54124 Thessaloniki, Greece

Contact the author

Keywords

‘Xynisteri’, ‘Mavro’, sun-drying, commandaria, LC-DAD-qTOF-MS

Tags

Citation

Related articles…

Sustainable yield management through fruitfulness and bunch architecture manipulation

Vineyards are highly variable and this variation is largely driven by environmental conditions and seasonal variation. For example, warm temperatures

Sensory profiles of Shiraz wine from six Barossa sub-regions: a comparison between industry scale and standardised small lot research wine making

Aims: The Barossa wine region in South Australia comprises six sub-regions and is renowned for its Shiraz wines. However, there is no comprehensive documentation of the distinctive sensory characteristics of wines from these sub-regions.

Copper contamination in vineyard soils of Bordeaux: spatial risk assessment for the replanting of vines and crops

Copper (Cu) is widely and historically used in viticulture as a fungicide against mildew. Cu has a strong affinity for soil organic matter and accumulates in topsoil horizons. Thus, Cu may negatively affect soil organisms and plants, consequently reducing soil fertility and productivity. The Bordeaux vineyards have the largest vineyard surfaces (26%) within French controlled appellation and a great proportion of French wine production (around 5 million hl per year). Considering the local context of vineyard surfaces decreasing (vine uprooting) and possible new crop plantation, the issue of Cu potential toxicity rises. Therefore, the aims of this work are firstly to evaluate the Cu contamination in vineyard soils of Bordeaux, secondly to produce a risk assessment map for new vine or crop plantation. We used soil analyses from several local studies to build a database with 4496 soil horizon samples. The database was enhanced by means of pedotransfer functions in order to estimate the bioaccessible (EDTA-extractable) Cu in soils of samples without measurements. From this database, 1797 georeferenced samples with CuEDTA concentrations in the topsoil (0-50 cm depth) were used for kriging interpolation in order to produce the spatial distribution map of CuEDTA in vineyard soils. Then, the spatial distribution of Cu was crossed with vine uprooting surfaces and municipality boundaries. CuEDTAconcentrations ranged from 0.52 to 459 mg/kg and showed clear anomalies. Our results from spatial analysis showed that almost 50% of vineyard soil surfaces have CuEDTA concentrations higher than 30 mg/kg (moderate risk for new plantation) and 20% with concentrations higher than 50 mg/kg (high risk for new plantation). A decision-support map based on municipalities was realised to provide a simple tool to stakeholders concerned by land use management.

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.

Fractal analysis as a tool for delimiting guarantee of quality areas

The pioneering work of Mandelbrot in the 70’s for building the fractal theory lead rapidly to many interesting applications in different fields such as earth sciences and economy.