OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Impact of non-Saccharomyces in malolactic fermentation of white and red winemaking

Impact of non-Saccharomyces in malolactic fermentation of white and red winemaking

Abstract

Nowadays the use of non-Saccharomyces as starters of alcoholic fermentation (AF) has increased because of the modulation of the organoleptic profile of wines. Additionally, these wines can undergo a malolactic fermentation (MLF) driven out by lactic acid bacteria, mainly Oenococcus oeni. Since MLF is usually performed after AF, MLF is highly influenced by the metabolism of the yeasts that have conducted the AF. 

In the present work, we tested the oenological impact of sequential AF with Torulaspora delbrueckii or Metschnikowia pulcherrima with Saccharomyces cerevisiae on the MLF. Grape musts of Macabeu and Cabernet Sauvignon from 2018 vintage were inoculated with the two non-Saccharomyces. After 48h, the fermenting musts were inoculated with S. cerevisiae. Musts inoculated with only S. cerevisiae were used as control. After AF, wines were racked and stabilized at 7 ºC for a week. Two O. oeni strains were used to perform MLF of wines corrected in L-malic acid concentration and pH. Also, a spontaneous MLF was followed. General oenological parameters, volatile and phenolic compounds, organic acids and AF and MLF kinetics were studied. 

Generally, wines were chemically similar, being the ones fermented with T. delbrueckii more different. In all AF the non-Saccharomyces imposition was >90% at 48 h but at the end of AF stage S. cerevisiae is the sole dominant species. Moreover, the MLF finished earlier when a non-Saccharomyces was previously been inoculated. In this way, MLF of red wines was already completed spontaneously when AF finished. All MLF finished in less than 8 days with the exception of the spontaneous one in S. cerevisiae wine (17 days). Overall, the inoculated MLF were quicker than the spontaneous MLF, apart from an inoculated O. oeni strain in M. pulcherrima wine. Citric acid was completely consumed after MLF except in the spontaneous MLF of S. cerevisiae wine. According to the volatile analyses, the fermentation with T. delbrueckii lead a reduction of medium-chain fatty acid concentration. The sensorial analyses showed that the lactic character was highly noticed by the testers in the spontaneous MLF, highlighting the one of M. pulcherrima sequential AF. 

To sum up, MLF was highly influenced by both the AF strategy (presence of non-Saccharomyces) and the strain of O. oeni. Wines obtained with T. delbrueckii seem to be more MLF friendly, allowing quick MLF and developing wines more different from S. cerevisiae, being the best rated by the testers.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Aitor Balmaseda, Nicolas Rozès, Albert Bordons, Cristina Reguant

Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili, Spain

Contact the author

Keywords

non-Saccharomyces, malolactic fermentation, Oenococcus oeni 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Assessment of O2 consumption, a new tool to select bioprotection yeast strains

Reduction of sulfur dioxide during winemaking is a request from the wine industry. To replace sulfur dioxide, various alternatives exist, including bioprotection by yeast inoculation. This practice consists in adding non-Saccharomyces yeasts directly on the grapes or must.

Studying heat waves effects on berry composition: first outlooks and challenges

Extreme climatic events, such as prolonged drought followed by intense flooding, increasingly impact viticulture, affecting vine physiology, productivity, and grape composition.

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles.

la caratterizzazione dell’areale viticolo “terre alte di brisighella”: aspetti metodologici e primi risultati

La zonazione viticola rappresenta un importante strumento di indagine per valutare e interpretare le potenzialità produttive e qualitative di un territorio. Con l’obiettivo di studiare come l’ambiente influisca sulla qualità dell’uva nell’areale di Brisighella, sono stati monitorati, nelle annate 2007, 2008 e 2009, 14 vigneti per la varietà Albana e 38 per la varietà Sangiovese, rappresentativi di una area vitata di circa 1000 ha.

Attractiveness and sweetness of red wines: Synergies between American oak barrels and mannoproteins

In partnership with a Bordeaux property wanting to improve the quality of its second wine, the effects of two factors, American oak barrels and mannoproteins were studied. Their impact on the attractiveness and sweetness of wines were characterized during two successive vintages (2012 and 2013). Vinification took place with a homogeneous batch of Cabernet Sauvignon. The wine was then divided up into various groups of five barrels of French and American oak, new or reused. Analyses of volatile and non-volatile wood compounds were undertaken at four months and eight months of wood ageing, by LC-MS and GC-MS.