OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Impact of non-Saccharomyces in malolactic fermentation of white and red winemaking

Impact of non-Saccharomyces in malolactic fermentation of white and red winemaking

Abstract

Nowadays the use of non-Saccharomyces as starters of alcoholic fermentation (AF) has increased because of the modulation of the organoleptic profile of wines. Additionally, these wines can undergo a malolactic fermentation (MLF) driven out by lactic acid bacteria, mainly Oenococcus oeni. Since MLF is usually performed after AF, MLF is highly influenced by the metabolism of the yeasts that have conducted the AF. 

In the present work, we tested the oenological impact of sequential AF with Torulaspora delbrueckii or Metschnikowia pulcherrima with Saccharomyces cerevisiae on the MLF. Grape musts of Macabeu and Cabernet Sauvignon from 2018 vintage were inoculated with the two non-Saccharomyces. After 48h, the fermenting musts were inoculated with S. cerevisiae. Musts inoculated with only S. cerevisiae were used as control. After AF, wines were racked and stabilized at 7 ºC for a week. Two O. oeni strains were used to perform MLF of wines corrected in L-malic acid concentration and pH. Also, a spontaneous MLF was followed. General oenological parameters, volatile and phenolic compounds, organic acids and AF and MLF kinetics were studied. 

Generally, wines were chemically similar, being the ones fermented with T. delbrueckii more different. In all AF the non-Saccharomyces imposition was >90% at 48 h but at the end of AF stage S. cerevisiae is the sole dominant species. Moreover, the MLF finished earlier when a non-Saccharomyces was previously been inoculated. In this way, MLF of red wines was already completed spontaneously when AF finished. All MLF finished in less than 8 days with the exception of the spontaneous one in S. cerevisiae wine (17 days). Overall, the inoculated MLF were quicker than the spontaneous MLF, apart from an inoculated O. oeni strain in M. pulcherrima wine. Citric acid was completely consumed after MLF except in the spontaneous MLF of S. cerevisiae wine. According to the volatile analyses, the fermentation with T. delbrueckii lead a reduction of medium-chain fatty acid concentration. The sensorial analyses showed that the lactic character was highly noticed by the testers in the spontaneous MLF, highlighting the one of M. pulcherrima sequential AF. 

To sum up, MLF was highly influenced by both the AF strategy (presence of non-Saccharomyces) and the strain of O. oeni. Wines obtained with T. delbrueckii seem to be more MLF friendly, allowing quick MLF and developing wines more different from S. cerevisiae, being the best rated by the testers.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Aitor Balmaseda, Nicolas Rozès, Albert Bordons, Cristina Reguant

Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili, Spain

Contact the author

Keywords

non-Saccharomyces, malolactic fermentation, Oenococcus oeni 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Study of fungal and bacterial laccases for the reduction of ochratoxin A content in model wine

Ochratoxin A (OTA) is a mycotoxin produced by several filamentous fungi infecting grape bunches (Penicillium and Aspergillus spp.), this toxin pass to must when grapes are crushed and later it is found in wine. Following the evaluations of the toxicity of OTA, European Commission Regulations have been promulgated introducing upper limits for OTA concentrations in various commodities (cereals, cereal products, dried vine fruit, coffee, wine, grape juice, baby foods and dietary foods for special medical purposes).

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.