OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Impact of non-Saccharomyces in malolactic fermentation of white and red winemaking

Impact of non-Saccharomyces in malolactic fermentation of white and red winemaking

Abstract

Nowadays the use of non-Saccharomyces as starters of alcoholic fermentation (AF) has increased because of the modulation of the organoleptic profile of wines. Additionally, these wines can undergo a malolactic fermentation (MLF) driven out by lactic acid bacteria, mainly Oenococcus oeni. Since MLF is usually performed after AF, MLF is highly influenced by the metabolism of the yeasts that have conducted the AF. 

In the present work, we tested the oenological impact of sequential AF with Torulaspora delbrueckii or Metschnikowia pulcherrima with Saccharomyces cerevisiae on the MLF. Grape musts of Macabeu and Cabernet Sauvignon from 2018 vintage were inoculated with the two non-Saccharomyces. After 48h, the fermenting musts were inoculated with S. cerevisiae. Musts inoculated with only S. cerevisiae were used as control. After AF, wines were racked and stabilized at 7 ºC for a week. Two O. oeni strains were used to perform MLF of wines corrected in L-malic acid concentration and pH. Also, a spontaneous MLF was followed. General oenological parameters, volatile and phenolic compounds, organic acids and AF and MLF kinetics were studied. 

Generally, wines were chemically similar, being the ones fermented with T. delbrueckii more different. In all AF the non-Saccharomyces imposition was >90% at 48 h but at the end of AF stage S. cerevisiae is the sole dominant species. Moreover, the MLF finished earlier when a non-Saccharomyces was previously been inoculated. In this way, MLF of red wines was already completed spontaneously when AF finished. All MLF finished in less than 8 days with the exception of the spontaneous one in S. cerevisiae wine (17 days). Overall, the inoculated MLF were quicker than the spontaneous MLF, apart from an inoculated O. oeni strain in M. pulcherrima wine. Citric acid was completely consumed after MLF except in the spontaneous MLF of S. cerevisiae wine. According to the volatile analyses, the fermentation with T. delbrueckii lead a reduction of medium-chain fatty acid concentration. The sensorial analyses showed that the lactic character was highly noticed by the testers in the spontaneous MLF, highlighting the one of M. pulcherrima sequential AF. 

To sum up, MLF was highly influenced by both the AF strategy (presence of non-Saccharomyces) and the strain of O. oeni. Wines obtained with T. delbrueckii seem to be more MLF friendly, allowing quick MLF and developing wines more different from S. cerevisiae, being the best rated by the testers.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Aitor Balmaseda, Nicolas Rozès, Albert Bordons, Cristina Reguant

Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili, Spain

Contact the author

Keywords

non-Saccharomyces, malolactic fermentation, Oenococcus oeni 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Red wine oxidation study by accelerating ageing tests and electrochemical method

Red wines can undergo many undesirable changes during the winemaking process and storage, particularly oxidative degradation due to numerous atmospheric oxygen intakes. This spoilage can impact organoleptic properties and color stabilization but this impact depends on the wine composition. Phenolic compounds constitute primary targets to oxidation reactions

Occurrence of methyl salicylate in lugana wines: aroma impact and biogenesis 

AIM Methyl salicylate (MeSA) has been reported as a potentially impactful compound in Verdicchio wines produced in central Italy. Lugana is another white wine produced in the north-east of Italy from a grape locally known as Trebbiano di Soave, sharing a very similar genetic background with Verdicchio. The aims of this study were evaluating MeSA occurrence in Lugana, assessing its aroma impact on white wines aroma and elucidating its biogenesis during vinification. METHODS Fifteen Lugana wines were analysed for methyl salycilate content in comparison with Verdicchio, Pinot grigio and Garganega wines. MeSA impact on white wine aroma was studied by means of triangular test, adding MeSA at different concentrations. Possible routes of MeSA formation by yeast were investigated by means of a high throughput assay in which S. cerevisiae cells were put in contact with precursor such as salicylic acid (esterification) or glycosidic extracts (glycosidase). Sub-fractions of Lugana glycosidic extracts were also obtained by HPLC fractionation, allowing further evaluation of precursors role.

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must.

Rootstocks of prestigious Bordeaux vineyards: implications on quality and yield

Rootstocks have been used in most of the vineyards for over a century. This may seem to be a long period, but it represents only three successive plantations.

Late season canopy management practices to reduce sugar loading and improve color profile of Cabernet-Sauvignon grapes and wines in the high irradiance and hot conditions of California Central Valley

Global warming is accelerating grape ripening, leading to unbalanced wines from fruit with high sugar content but poor aroma and colour development. Reducing the size of the photosynthetic apparatus after veraison has been shown to delay technological ripeness in cool climates, but methods have not been tested in areas with high irradiance and temperature where fruit exposure could have disastrous effects on berry composition. In this Cabernet-Sauvignon trial, we compared the application of an antitranspirant (pinolene), to severe canopy topping and above bunch zone leaf removal, all performed at mid-ripening, with an untouched control. We monitored the vines weekly by measuring stem water potential, gas exchange, fruit zone light exposure. We sampled berries to measure berry weight, total soluble solids, pH, titratable acidity, and the anthocyanin profile. At harvest, we assessed yield components, measured carbon isotope discrimination, rated sunburn on clusters, and produced experimental wines. We submitted harvest samples to metabolomic profiling through PFP-Q Exactive MS/MS and wines to sensory analysis. Application of the antitranspirant significantly reduced stomatal conductance and assimilation rate but did not affect the stem water potential. Inversely, leaf removal and topping increased water potential but did not affect leaf gas exchange. The late topping was the only treatment able to decrease sugar content (up to 2Bx), increase titratable acidity and pH, and improve anthocyanin content because of lower degradation of di-hydroxylated forms. Late leaf removal above the bunch zone increased lightning conditions in the canopy and produced the most significant damage on fruits. Yield components were not affected. This work suggests that late-season canopy management can effectively control ripening speeds and improve grapes and wines. Still, the effect on grape exposure in a critical time must be well balanced to avoid problems with the appropriate technique.