OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Impact of non-Saccharomyces in malolactic fermentation of white and red winemaking

Impact of non-Saccharomyces in malolactic fermentation of white and red winemaking

Abstract

Nowadays the use of non-Saccharomyces as starters of alcoholic fermentation (AF) has increased because of the modulation of the organoleptic profile of wines. Additionally, these wines can undergo a malolactic fermentation (MLF) driven out by lactic acid bacteria, mainly Oenococcus oeni. Since MLF is usually performed after AF, MLF is highly influenced by the metabolism of the yeasts that have conducted the AF. 

In the present work, we tested the oenological impact of sequential AF with Torulaspora delbrueckii or Metschnikowia pulcherrima with Saccharomyces cerevisiae on the MLF. Grape musts of Macabeu and Cabernet Sauvignon from 2018 vintage were inoculated with the two non-Saccharomyces. After 48h, the fermenting musts were inoculated with S. cerevisiae. Musts inoculated with only S. cerevisiae were used as control. After AF, wines were racked and stabilized at 7 ºC for a week. Two O. oeni strains were used to perform MLF of wines corrected in L-malic acid concentration and pH. Also, a spontaneous MLF was followed. General oenological parameters, volatile and phenolic compounds, organic acids and AF and MLF kinetics were studied. 

Generally, wines were chemically similar, being the ones fermented with T. delbrueckii more different. In all AF the non-Saccharomyces imposition was >90% at 48 h but at the end of AF stage S. cerevisiae is the sole dominant species. Moreover, the MLF finished earlier when a non-Saccharomyces was previously been inoculated. In this way, MLF of red wines was already completed spontaneously when AF finished. All MLF finished in less than 8 days with the exception of the spontaneous one in S. cerevisiae wine (17 days). Overall, the inoculated MLF were quicker than the spontaneous MLF, apart from an inoculated O. oeni strain in M. pulcherrima wine. Citric acid was completely consumed after MLF except in the spontaneous MLF of S. cerevisiae wine. According to the volatile analyses, the fermentation with T. delbrueckii lead a reduction of medium-chain fatty acid concentration. The sensorial analyses showed that the lactic character was highly noticed by the testers in the spontaneous MLF, highlighting the one of M. pulcherrima sequential AF. 

To sum up, MLF was highly influenced by both the AF strategy (presence of non-Saccharomyces) and the strain of O. oeni. Wines obtained with T. delbrueckii seem to be more MLF friendly, allowing quick MLF and developing wines more different from S. cerevisiae, being the best rated by the testers.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Aitor Balmaseda, Nicolas Rozès, Albert Bordons, Cristina Reguant

Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili, Spain

Contact the author

Keywords

non-Saccharomyces, malolactic fermentation, Oenococcus oeni 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Phenolic composition of Tempranillo Blanco grapes changes after foliar application of urea

Our research aimed to determine the effect and efficiency of foliar application of urea on the phenolic composition of Tempranillo Blanco grapes. The field experiment was carried out in 2019 and 2020 seasons and the plot was located in D.O.Ca Rioja (North of Spain). The vineyard was Vitis vinifera L. Tempranillo Blanco and grafted on Richter-110 rootstock. The treatments were control (C), whose plants were sprayed with water and three doses of urea: plants were sprayed with urea 3 kg N/ha (U3), 6 kg N/ha (U6) and 9 kg N/ha (U9). The applications were performed in two phenological stages, pre-veraison (Pre) and veraison (Ver). Also, each of the treatments was repeated one week later. Control and treatments were performed in triplicate and arranged in a randomised block design. Grapes were harvested at optimum ripening stage. High-performance liquid chromatography was used to analyse the phenolic composition of the grapes. Finally, the results obtained from the analytical determinations – flavonols, flavanols and non-flavonoid (hydroxybenzoic acids, hydroxycinnamic acids and stilbenes) – were studied statistically by analysis of variance. The results showed that, in 2019, U6-Pre and U9-Pre treatments increased the hydroxybenzoic acid content in grapes, and also all foliar treatments applied at Pre enhanced the stilbene concentration. Moreover, U3-Ver was the only treatment that rose flavonol and stilbene contents in the Tempranillo Blanco grapes. In 2020, all treatments applied at Pre enhanced the flavonol concentration in grapes. Furthermore, U3-Pre and U9-Pre treatments increased stilbene content in grapes. Nevertheless, the hydroxybenzoic acid content was improved by U6-Ver and U9-Ver and besides, hydroxycinnamic acid concentration in grapes was increased by all treatments applied at Ver. In conclusion, the lower and highest dose of urea (U3 and U9), applied at pre-veraison, were the best treatments to improve the Tempranillo Blanco grape phenolic composition.

Elevational range shifts of mountain vineyards: Recent dynamics in response to a warming climate

Increasing temperatures worldwide are expected to cause a change in spatial distribution of plant species along elevational gradients and there are already observable shifts to higher elevations as a consequence of climate change for many species. Not only naturally growing plants, but also agricultural cultivations are subject to the effects of climate change, as the type of cultivation and the economic viability depends largely on the prevailing climatic conditions. A shift to higher elevations therefore represents a viable adaptation strategy to climate change, as higher elevations are characterized by lower temperatures. This is especially important in the case of viticulture because a certain wine-style can only be achieved under very specific climatic conditions. Although there are several studies investigating climatic suitability within winegrowing regions or longitudinal shifts of winegrowing areas, little is known about how fast vineyards move to higher elevations, which may represent a viable strategy for winegrowers to maintain growing conditions and thus wine-style, despite the effects of climate change. We therefore investigated the change in the spatial distribution of vineyards along an elevational gradient over the past 20 years in the mountainous wine-growing region of Alto Adige (Italy). A dataset containing information about location and planting year of more than 26000 vineyard parcels and 30 varieties was used to perform this analysis. Preliminary results suggest that there has been a shift to higher elevations for vineyards in general (from formerly 700m to currently 850 m a.s.l., with extreme sites reaching 1200 m a.s.l.), but also that this development has not been uniform across different varieties and products (i.e. vitis vinifera vs hybrid varieties and still vssparkling wines). This is important for climate change adaptation as well as for rural development. Mountain areas, especially at mid to high elevations, are often characterized by severe land abandonment which can be avoided to some degree if economically viable and sustainable land management strategies are available.

Evidence of successful wine business strategies: customer acquisition, value or retention?

This presentation illustrates a series of successful wine businesses, which have managed to counter the downward trend impacting the global industry. How these businesses have been successful is explained through the planning and execution of strategies that focused on a clear and consistent aim in attracting new consumers. These cases add weight to the ehrenbergian position that for a business to be successful it must target new customers as a priority over alternative options like increasing value or improving customer retention.

Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Yeast cell wall components are valuable biotechnological tools with applications in oenology and beyond [1], [2].

Kinetic investigations of the sulfite addition on flavanols

Sulfonated monomeric and dimeric flavan-3-ols are recently discovered in wine and proved to have great importance in understanding wine chemistry and quality [1, 2].