GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

Abstract

Context and purpose of the study – The interest in understanding the water balance of terrestrial plants under drought has led to the creation of the isohydric/anisohydric terminology. The classification was related to an implication-driven framework, where isohydric plants maintain a constant and high leaf water potential through an early and intense closure of their stomata, hence risking carbon starvation. In contrast, anisohydric plants drop their leaf water potential to low values as soil drought is establishing due to insensitive stomata and thus risk mortality through hydraulic failure, albeit maximizing carbon intake. When applied to grapevines, this framework has been elusive, yielding discrepancies in the classification of different wine grape varieties around the world. There is a need to assess different wine grape varieties under the same growing conditions to enable conclusions on the differences in their response to drought and facilitate variety-specific irrigation management.

Material and methods – The vineyard was located in the ROZA irrigation district in the Yakima valley, Washington. Varieties were grown side by side and replicated 8 times. Spacing was 1.8 m x 2.7 m in a North-South orientation. The vines were on their own-roots, double-trunked, trained to a bi-lateral cordon. 12-18 varieties of wine grape grown were studied for this experiment. Access tubes were installed for soil moisture measurements using a neutron probe, and irrigation was independently controlled for each row. Dry-down cycles were applied pre- and post-veraison from 2016 to 2018. On the same day, predawn (Ψpd) and midday leaf water potential (Ψmd) were measured with a pressure chamber, stomatal conductance (gs) was measured with a porometer at midday and on the same leaf in 2016 and 2017 and with an infrared gas analyzer in 2018. Soil moisture measurements were taken on the same day for each vine.

Results – The results show that there may be three distinctive major patterns of midday leaf water potential response to soil water availability: Linear drop across the entire soil moisture range such as for Cabernet franc and Semillon, linear drop below a threshold of soil moisture such as for Gewurztraminer and Grenache, and an insensitive to soil moisture such as for Lemberger and Riesling. Meanwhile, the stomatal sensitivity did not always mirror the Ψmd behavior; for example some varieties like Cabernet franc show a linear drop of Ψmid while having a tight stomatal control during soil drought (r=0.76) while other varieties like Riesling have an insensitive response of Ψmid (r=0.33) without necessarily having sensitive stomata (r=0.56). Finally, the slope of the linear Ψmd:Ψpd, studied as an the indicator of the internal regulation of water status, varied between 0.4 for Grenache and 1 for Semillon. This shows that for our vineyard, transpiration sensitivity was always higher than hydraulic sensitivity. Since intense yellowing of leaves has been recorded in varieties like Cabernet franc, Muscat blanc and Malbec, these results direct us to inspect if the sensitivity of gs in those varieties is leading to carbon starvation during drought. These results may eventually be used by growers to devise variety-specific irrigation management strategies.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Joelle MARTINEZ*, Markus KELLER

Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA

Contact the author

Keywords

wine grape, Isohydric, Anisohydric, stomatal regulation, water potential, hydraulic regulation

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Alternative methods to evaluate the pinking susceptibility of white wines: derivative spectroscopy and ciel*a*b* colour analysis

Pinking describes the appearance of a salmon-red blush in white bottled wines produced exclusively from white grape varieties. It is understood as an undesirable chromatic phenomenon by both wine consumers and the industry. Nowadays, there are no treatments to fully reverse pinking once it occurs. Partial reversion has been shown after exposure of pinked wine to ultraviolet (UV) light.

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir. The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.

Influence of deficit irrigation on grapevine cv. “Touriga Nacional” in Douro region: A metabolomic approach

Aim: This study aimed to evaluate whether irrigation of Touriga Nacional in Douro Demarcated Region (DDR) can partly mitigate the negative impacts of ongoing climate change on grapevine yield and quality and its impact on plant metabolism.

Use of cyclodextrins to improve grape must fermentability thanks to their sequestering effect on medium-chain fatty acids

Cyclodextrins are complex cyclic oligosaccharides of glucose units. They are produced from the breakdown of starch by the enzymatic reaction of glucosyltransferase. The result is a ring-shaped molecule with a cavity with a hydrophilic outer part and a hydrophobic inner part. As a consequence of this cavity, cyclodextrin is able to form complexes with non-polar organic molecules [1,2].

Longevity and moderate wine consumption – can guidelines provide practical advice?

Conflicting messages about the consumption of alcoholic beverages – including wine – continue to dominate the media, causing increasing uncertainty among consumers and health professionals.