GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

Abstract

Context and purpose of the study – The interest in understanding the water balance of terrestrial plants under drought has led to the creation of the isohydric/anisohydric terminology. The classification was related to an implication-driven framework, where isohydric plants maintain a constant and high leaf water potential through an early and intense closure of their stomata, hence risking carbon starvation. In contrast, anisohydric plants drop their leaf water potential to low values as soil drought is establishing due to insensitive stomata and thus risk mortality through hydraulic failure, albeit maximizing carbon intake. When applied to grapevines, this framework has been elusive, yielding discrepancies in the classification of different wine grape varieties around the world. There is a need to assess different wine grape varieties under the same growing conditions to enable conclusions on the differences in their response to drought and facilitate variety-specific irrigation management.

Material and methods – The vineyard was located in the ROZA irrigation district in the Yakima valley, Washington. Varieties were grown side by side and replicated 8 times. Spacing was 1.8 m x 2.7 m in a North-South orientation. The vines were on their own-roots, double-trunked, trained to a bi-lateral cordon. 12-18 varieties of wine grape grown were studied for this experiment. Access tubes were installed for soil moisture measurements using a neutron probe, and irrigation was independently controlled for each row. Dry-down cycles were applied pre- and post-veraison from 2016 to 2018. On the same day, predawn (Ψpd) and midday leaf water potential (Ψmd) were measured with a pressure chamber, stomatal conductance (gs) was measured with a porometer at midday and on the same leaf in 2016 and 2017 and with an infrared gas analyzer in 2018. Soil moisture measurements were taken on the same day for each vine.

Results – The results show that there may be three distinctive major patterns of midday leaf water potential response to soil water availability: Linear drop across the entire soil moisture range such as for Cabernet franc and Semillon, linear drop below a threshold of soil moisture such as for Gewurztraminer and Grenache, and an insensitive to soil moisture such as for Lemberger and Riesling. Meanwhile, the stomatal sensitivity did not always mirror the Ψmd behavior; for example some varieties like Cabernet franc show a linear drop of Ψmid while having a tight stomatal control during soil drought (r=0.76) while other varieties like Riesling have an insensitive response of Ψmid (r=0.33) without necessarily having sensitive stomata (r=0.56). Finally, the slope of the linear Ψmd:Ψpd, studied as an the indicator of the internal regulation of water status, varied between 0.4 for Grenache and 1 for Semillon. This shows that for our vineyard, transpiration sensitivity was always higher than hydraulic sensitivity. Since intense yellowing of leaves has been recorded in varieties like Cabernet franc, Muscat blanc and Malbec, these results direct us to inspect if the sensitivity of gs in those varieties is leading to carbon starvation during drought. These results may eventually be used by growers to devise variety-specific irrigation management strategies.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Joelle MARTINEZ*, Markus KELLER

Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA

Contact the author

Keywords

wine grape, Isohydric, Anisohydric, stomatal regulation, water potential, hydraulic regulation

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Altered lignans accumulation in a somatic variant of Tempranillo with increased extractability of polyphenols during winemaking

Vegetative propagation of grapevines can generate spontaneous somatic variations, providing a valuable source for cultivar improvement. In this context, natural variation in the composition of phenolic compounds in grapevine berries and seeds stands as a pivotal factor in crafting wines with diverse oenological profiles from the same cultivar. To deepen on the understanding of the physiological and genetic mechanisms driving somatic variation in grape phenolics, here we characterized a somatic variant from Tempranillo Tinto, the clone VN21, that exhibits an intense reduced berry skin cuticle and increased extractability of phenolic compounds during wine fermentation.

Climate change and economic challenge – strategies for vinegrowers, winemakers and wine estates

For wine areas around the world, nature and climate are becoming factors of production whose endowment becomes a stake beyond the traditional economic factors: labor, capital, land. They strongly influence agricultural and environmental conditions for production.

Chemical and sensory influences of the UV-C light of 254 nm in combination with the antioxidant substances in wine

The UV-C light enhances oxidative processes in wine. Increasing the dose of UV-C can lead to olfactoric, gustatoric and colour changes in wine. These changes are triggered by a series of photochemical reactions such as degradation of esters, the formation of odour-active substances such as 2 aminoacetophenone through the photooxidation of amino acids. Ultimately, these reactions can lead to a reduced wine quality.

Methyl jasmonate versus nano methyl jasmonate: effects on anthocyanins mature evolution in monastrell grapes

The climate change is afecting particulary to the South of Spain, with high temperatures. It is important to develop new strategies in order to mantain the quality of wines

Acceptability of canned wines: effect of the level of involvement of consumers and type of wine

In recent years there has been a growing demand for alternative packaging designs in the food industry focused on diminishing the carbon footprint. Despite the environmental advantages of cans versus bottles, the traditional environment of wine has hindered the establishment of less contaminant containers. In this context, the objective of this study was to understand and generate knowledge about consumers´ perception of canned wines in comparison to bottled wines.