OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Mathematical modeling of fermentation kinetics: a tool to better understand interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in mixed cultures

Mathematical modeling of fermentation kinetics: a tool to better understand interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in mixed cultures

Abstract

Nowadays the use of Torulaspora delbrueckii is more and more common in winemaking. However, its behavior in presence of Saccharomyces cerevisiae is not always predictable. Indeed, the interactions existing between the two yeasts are still not well characterized and can lead to a bad control during their implementation in mixed cultures. The objective of the work presented here was to use the mathematical modeling as a tool to better understand microbial interactions in this context. 

Mixed cultures of a couple of oenological yeasts composed of T. delbrueckii and S. cerevisiae were carried out on a synthetic grape must in anaerobiosis. The impact of various parameters was evaluated: assimilable nitrogen concentration, direct and indirect contact (thanks to a membrane bioreactor), increase of lipids concentration (Tween 80 and ergosterol). 

The analysis of experimental data acquired during the pure cultures of each yeast enable to establish a mathematical model to describe the fermentation kinetics for pure cultures. Then this model was used to predict the kinetics of mixed cultures without any interaction except competition for substrates (sugar and nitrogen). The comparison between predicted and experimental kinetics showed that in mixed culture several kind of interactions must be taken into account: competition for space, cell to cell contact, reciprocal stimulation. Moreover, at low lipids initial concentration, S. cerevisiae dominated T. delbrueckii by producing a toxic metabolite. An increase in the initial lipids concentration completely reversed this domination.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Patricia Taillandier, Cedric Brandam, Sandra Beaufort, Paul Brou

LGC université de Toulouse – 4 alle Emile Monso CS 84234 – 31432 Toulouse Cedex4

Contact the author

Keywords

modeling, interaction, Saccharomyces, Torulaspora 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

CropManage online decision support tool for irrigation scheduling of vineyards

CropManage (CM) is an online decision support service (DSS) developed by the University of California, Division of Agriculture and Natural Resources for assisting farmers with efficiently managing water and nitrogen fertilizer to match the site-specific needs of their crops.

Wine lees: characterization and valorization by kombucha fermentation

Winemaking generates various types of residues (vine shoots, stalks, pomace, wine lees and filtration cakes) which can have a notable environmental and economic impact. Wine by-products are rich in bioactive compounds and therefore their valorization can be beneficial on different levels.

Chemical systems behind wine aroma perception: overview, genesis and evolution

This talk presents a revision of our knowledge and understanding of the role played by the different aroma chemicals in the positive aroma attributes of wine. A systematic approach to classifying the different aroma chemicals of wine is presented .

Zoning methods in relation to the plant

The characterization of the plant is the obliged pathway between the environment and the product. The responses of the plant amplify or reduce the variations of the environment, while determining directly the type and the quality of the products. These results are inscribed inside the Viticultural Terroir Unit (VTU). VTU is the complex interaction between the Basic Terroir Unit or BTU (interaction mesoclimate x soil/subsoil), the genotype (variety x rootstock), the management system, the oenological technologies. Thus, at the most complex level, a global biological triptych is found again : environment (source) x plant (structure) = produced and exchanged substances.

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.