OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Mathematical modeling of fermentation kinetics: a tool to better understand interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in mixed cultures

Mathematical modeling of fermentation kinetics: a tool to better understand interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in mixed cultures

Abstract

Nowadays the use of Torulaspora delbrueckii is more and more common in winemaking. However, its behavior in presence of Saccharomyces cerevisiae is not always predictable. Indeed, the interactions existing between the two yeasts are still not well characterized and can lead to a bad control during their implementation in mixed cultures. The objective of the work presented here was to use the mathematical modeling as a tool to better understand microbial interactions in this context. 

Mixed cultures of a couple of oenological yeasts composed of T. delbrueckii and S. cerevisiae were carried out on a synthetic grape must in anaerobiosis. The impact of various parameters was evaluated: assimilable nitrogen concentration, direct and indirect contact (thanks to a membrane bioreactor), increase of lipids concentration (Tween 80 and ergosterol). 

The analysis of experimental data acquired during the pure cultures of each yeast enable to establish a mathematical model to describe the fermentation kinetics for pure cultures. Then this model was used to predict the kinetics of mixed cultures without any interaction except competition for substrates (sugar and nitrogen). The comparison between predicted and experimental kinetics showed that in mixed culture several kind of interactions must be taken into account: competition for space, cell to cell contact, reciprocal stimulation. Moreover, at low lipids initial concentration, S. cerevisiae dominated T. delbrueckii by producing a toxic metabolite. An increase in the initial lipids concentration completely reversed this domination.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Patricia Taillandier, Cedric Brandam, Sandra Beaufort, Paul Brou

LGC université de Toulouse – 4 alle Emile Monso CS 84234 – 31432 Toulouse Cedex4

Contact the author

Keywords

modeling, interaction, Saccharomyces, Torulaspora 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

Impact of glutathione and elemental sulphur juice addition on the volatile thiol production in South African Sauvignon blanc wine

Three compounds, 3-mercaptohexanol (3MH), 3-mercaptohexyl-acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP), also known as varietal thiols, have been identified to contribute positively to wine aroma and are responsible for the distinct gooseberry, grapefruit, guava and box tree character found in Sauvignon blanc wines. Certain volatile thiol compounds though, can cause off-aromas of onion, garlic, rubber and rotten egg, this group of molecules is known as reductive sulphur compounds (RSC). This study looks into how the addition of sulphur-compounds to Sauvignon blanc juice contributes to the varietal thiol (3MH and 3MHA) concentration and reductive sulphur compound concentration in South African Sauvignon blanc wine.

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.

SAVOIR: A project promoting innovative and effective prophylactic methods in viticulture, as part of the governmental plan to anticipate the withdrawal of plant protection products in France (PARSADA)

Faced with the likely withdrawal of commercial specialities from use in the short to medium term, France has decided to implement an ambitious action plan to anticipate and avoid withdrawal without alternative solutions. The French wine industry (cniv and ifv) has been heavily involved in this action to define priorities. faced with the risk of the withdrawal of multi-site fungicides (folpel, dithianon, copper) coupled with the probable reduction in single-site fungicide solutions, mildew and black rot have been identified as the priority uses.

Relation entre les caractéristiques des fromages d’Appellation d’Origine Contrôlée et les facteurs de production du lait

Les fromages d’Appellation d’Origine Contrôlée (AOC) représentent un enjeu économique important pour la filière laitière (11 % des fromages produits en France sont des fromages d’AOC, et dans certaines régions de montagne, cette proportion dépasse 50 %). Les spécificités de ces fromages et leurs liaisons avec les caractéristiques du terroir constituent un système complexe où interagissent en particulier la technologie fromagère et les caractéristiques des laits (composition chimique en particulier). Ces dernières dépendent elles-mêmes des caractéristiques des animaux (origine génétique, facteurs physiologiques, état sanitaire) et de leur mode de conduite (alimentation, hygiène, traite…) (fig. 1). L’influence de ces facteurs de production (alimentation et type d’animal en particulier) sur les caractéristiques des fromages est fréquemment mise en avant par les fromagers, sur la base d’observations empiriques. Il existe cependant très peu de travaux expérimentaux sur le sujet, en raison, entre autres, de la difficulté de séparer correctement les effets propres de ces facteurs d’amont de ceux liés à la technologie fromagère.